- 博客(5)
- 资源 (13)
- 论坛 (1)
- 收藏
- 关注
原创 压缩感知基础入门知识
压缩感知压缩感知是2006年才开始兴起的研究方向,它主要是借助自然信号的规律性,从而可大大减少观测次数。这在很多领域都有很好的应用前景。对于自然信号的规律性,用数学语言可以做很多种描述,比较流行的一种就是自然信号在一组基底表示下是稀疏的。压缩感知说的是对于方程组Ax=bAx=bAx=b,AAA是m×Nm\times Nm×N,这里m<Nm<Nm<N的矩阵,什么条件下,能保证x...
2019-11-24 20:05:26
462
3
原创 函数型数据主成分分析(FPCA)
本文主要介绍了以下几个方面的内容:简单介绍了经典的主成分分析方法,包括其数学推导,算法步骤,和几个实际算例;简单介绍了其它的数据降维方法,譬如局部线性嵌入以及它的简单算例;更近一步,我们介绍了函数型主成分分析方法(FPCA),包括其基本思想、数学推导、算法描述等,最为重要的是,我们将该方法和本领域进行结合,有了一些新的思考,感谢"数据科学与矩阵优化"课程给带来的灵感。文章目录前言主成分分析(...
2019-11-24 19:57:27
3619
1
原创 基于nips改进的LaTex中文模板
之前写了一份中文模板。但是标题摘要那一块趋于扁平化,没有比较酷的style。另外,如果用latex编译,是不支持除了eps之外的图片的插入。故而,做了这一份基于nips模板改进的模板。首先,下载nips官方提供的模板,使用nips14submit_e.sty文件。Ctex中文套装,编辑器是WinEdt,采用pdflatex编译。源文件如下。\documentclass[12pt,a4pap...
2019-11-24 18:43:34
1470
原创 曲面偏微分方程:参数化有限元方法
曲面偏微分方程:参数化有限元方法前面介绍的P\mathbf{P}P和Pd\mathbf{Pd}Pd,及其对应的同参等值延伸及投影自然延伸,对于曲面上有限元方法的理论分析起着至关重要的作用。利普希茨参数曲面上的FEM利普希茨参数化曲面因为同参映射P\mathbf{P}P的双利普希茨性,存在一个常数LLL,使得 (64) L−1∣x1−x2∣≤∣x~1−x~2∣≤L∣x1...
2019-11-06 23:40:21
405
傅里叶谱方法相关文献和代码汇总.rar
2019-12-14
song_data.csv
2020-03-13
单位分解有限元方法(PUFEM)_PPT
2019-12-14
Fast Marching.rar
2019-12-14
双曲守恒律的ENO格式和WENO格式.zip
2019-12-14
一维激波管问题的数值求解代码.rar
2019-12-14
lsec小陆的留言板
发表于 2020-01-02 最后回复 2020-08-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝