【小波分析】二、小波分析基础知识

【小波分析】二、小波分析基础知识

基本记号

信号空间

对于一个无限的序列:
p ( x − 2 , x − 1 , x 0 , x 1 , … ) p\left(x_{-2} ,x_{-1},x_{0}, x_{1}, \ldots\right) p(x2,x1,x0,x1,)
若离散序列是能量有限的,即
∑ l = − ∞ + ∞ ∣ x l ∣ 2 < + ∞ \sum_{l=-\infty}^{+\infty}\left|x_{l}\right|^{2}<+\infty l=+xl2<+
我们成所有这些序列构成的空间为 l 2 ( Z ) l^{2}(Z) l2(Z)

同样地,我们可以定义 L 2 ( R ) L^{2}(\mathbb{R}) L2(R) 空间,
L 2 ( R ) = { f ( t ) : ∫ − ∞ + ∞ ∣ f ( t ) ∣ 2 < + ∞ } L^{2}(\mathbb{R})=\left\{f(t): \int_{-\infty}^{+\infty} \left| f(t) \right|^2<+\infty\right\} L2(R)={f(t):+f(t)2<+}

f f f 是以 2 π 2\pi 2π为周期的周期函数,且在一个周期上能量有限,
∫ 0 2 π ∣ f ( t ) ∣ 2 d t < + ∞ \int_{0}^{2 \pi}|f(t)|^2d t < +\infty 02πf(t)2dt<+

这类函数构成的空间,我们一般用 L 2 ( 0 , 2 π ) L^{2}(0,2 \pi) L2(0,2π) 表示。

内积和模(范数)

Hilbert 空间: ∀ f ( t ) , g ( t ) ∈ L 2 ( R ) \forall f(t), g(t) \in L^2(\mathbb{R}) f(t),g(t)L2(R)
⟨ f ( t ) , g ( t ) ⟩ = ∫ − ∞ + ∞ f ( t ) g ˉ ( t ) d t \langle f(t), g(t)\rangle=\int_{-\infty}^{+\infty} f(t) \bar{g}(t) d t f(t),g(t)=+f(t)gˉ(t)dt

∥ f ( t ) ∥ = ⟨ f ( t ) f ( t ) ⟩ = ( ∫ − ∞ + ∞ ∣ f ( t ) ∣ 2 d t ) 1 / 2 \|f(t)\|=\sqrt{\langle f(t) f(t)\rangle}=\left(\int_{-\infty}^{+\infty}|f(t)|^{2} d t\right)^{1 / 2} f(t)=f(t)f(t) =(+f(t)2dt)1/2

α f ( t ) + β g ( t ) ∈ L 2 ( R ) \alpha f(t)+\beta g(t) \in L^{2}(\mathbb{R}) αf(t)+βg(t)L2(R)

傅里叶变换及其性质

正变换(分解)

f ^ ( ω ) = 1 2 π ∫ − ∞ + ∞ f ( t ) e − i ω t d t \hat{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} f(t) e^{-i \omega t} d t f^(ω)=2π 1+f(t)eiωtdt

很容易理解,我们之前解释过,所谓的变换无非是找一组基,把函数在这组基下表示出来。那么所谓的傅里叶变换,无他,就是我们找了一组基 e i ω t e^{i\omega t} eiωt,这是一组连续的基,是通过 e e e的复指数或者说三角函数,通过伸缩得到的一组基。 ω \omega ω 表示频率, ω \omega ω 越大周期越小。正变换,就是求函数 f ( t ) f(t) f(t)在每一个频率对应的基下面的成分或者说投影,当然,前面还有一个系数。即,
< f , e i ω t > = ∫ − ∞ + ∞ f ( t ) e i ω t ‾ d t = ∫ − ∞ + ∞ f ( t ) e − i ω t <f,e^{i\omega t}> = \int_{-\infty}^{+\infty} f(t) \overline {e^{i \omega t}} d t = \int_{-\infty}^{+\infty} f(t) e^{-i \omega t} <f,eiωt>=+f(t)eiωtdt=+f(t)eiωt
f ^ ( ω ) \hat{f}(\omega) f^(ω) 也叫 f ( t ) f(t) f(t) 的谱。不说明的时候,我们一般用头顶上的 hat 来表达。

逆变换(重构)

f ( t ) = 1 2 π ∫ − ∞ + ∞ f ( ω ) e i ω t d ω f(t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} f(\omega) e^{i \omega t} d \omega f(t)=2π 1+f(ω)eiωtdω

当我们有了频率分量上的成分值(权重)大小时,我们在积分的意义下,做一个线性组合,就得到了原来的时域中的函数 f ( t ) f(t) f(t)

傅里叶正变换和傅里叶逆变换,构成了傅里叶变换的一个变换对。回忆以前的线性代数提到的,一组基到另外一组基的变换,对应着一个线性变换,当这个变换对应的矩阵是正定矩阵的时候,也就以为着这是不改变向量长度的旋转变换。同样地,我们看到,对于变换的算子有 e − i ω t ∗ e i ω t = 1 e^{-i\omega t}*e^{i\omega t} = 1 eiωteiωt=1,说明了傅里叶变换本质上是一个酉变换。

傅里叶变换的性质

  • Parseval 恒等式
    ⟨ f ( t ) , g ( t ) ⟩ = ⟨ f ( ω ) , g ( ω ) ⟩ \langle f(t), g(t)\rangle=\langle{f}(\omega) , g(\omega)\rangle f(t),g(t)=f(ω),g(ω)
  • 保持长度不变
    ∥ f ∥ 2 = ∥ f ^ ∥ 2 \|f\|^{2}=\|\hat f\|^{2} f2=f^2
  • 卷积的表达
    ( f ∗ g ) ^ ( w ) = f ^ ( w ) g ^ ( w ) \hat {(f * g)}(w)=\hat f(w) \hat g(w) (fg)^(w)=f^(w)g^(w)

卷积的表达有什么用呢?我们看卷积的定义:
( f ∗ g ) ( t ) = ∫ − ∞ + ∞ f ( u ) g ( t − u ) d u (f * g)(t)=\int_{-\infty}^{+\infty} f(u) g(t-u) d u (fg)(t)=+f(u)g(tu)du
这个计算计算很复杂。对于固定的 t t t点的值,每次都要计算一个积分才能得到。这是非线性增长的一个计算量。而有了这个卷积的表达公式,只要求原来的两个函数的傅里叶变换的乘积,再逆回来就可以得到卷积了。故而,这个性质为一类计算,比如说卷积运算,提供了最坚实的理论基础。

小波基

傅里叶变换优缺点

通过上述的分析,我们知道,傅里叶变换有非常好的一面,可以看到,对于谱的分析,再通过逆变换,可以变成了对原来信号的分析。

我们再来看一下傅里叶变换的缺点。傅里叶变换有什么美中不足的地方呢?在现实应用中,我们接收到的信号可能不会那么完美。可能就会在某个时刻出现“漂移”。这个漂移以为着在这个时刻点之后, f ( t ) f(t) f(t)整体向上平移了。这时候再做傅里叶变换,分析的结果就会出问题。出现漂移了怎么办?

一个比较笨的方式,通过肉眼或者别的手段,把这些漂移给找出来,比如说,一个漂移函数,可以写成
g ( t ) = { 0 t < t 0 δ t ⩾ t 0 g(t)=\left\{\begin{array}{ll} 0 & t<t_{0} \\ \delta & t \geqslant t_{0} \end{array}\right. g(t)={0δt<t0tt0
现在 f ( t ) → f ( t ) + g ( t ) f(t) \rightarrow f(t)+g(t) f(t)f(t)+g(t),我们只要找到这个 g ( t ) g(t) g(t)把它扣掉就行了。这就包括你要找到漂移点在哪,漂移量是多少。当系统比较复杂的时候,你要人工地,或者说用某些技术手段,去把这些漂移都找出来,不是一件容易的事情。

于是,不用人的眼睛,而是在算法的层面,让它自动地去识别这些漂移。很遗憾的是,傅里叶变换做不到。

除了上面提到的漂移,还有一种漂移是脉冲漂移。也就是信号只在一点突然增加,马上又恢复正常。譬如说,远方放了一炮,这个炮让我这里的一个信号突然荡了一下。这种情况下,漂移的表达其实上面的函数的一个导数,变成了狄拉克函数,即 δ = g ′ \delta = g' δ=g 。傅里叶分析对付不了这类突变的情况。

傅里叶变换缺点的问题和本质

我们现在来思考。为什么傅里叶变换处理不了这种情况。它的问题是什么?问题本质和根源在哪里?

空间问题

我们来看信号空间,我们要求 f ( t ) ∈ L 2 f(t) \in L^2 f(t)L2,这就意味着它是一个中间高两边低,慢慢衰减的函数,光衰减不够,不能保证收敛,我们得衰减得很快,也就是说,

lim ⁡ A → + ∞ , B → − ∞ ∫ A + ∞ ∣ f ( t ) ∣ 2 d t + ∫ − ∞ B ∣ f ( t ) ∣ 2 d t = 0 \lim_{A\rightarrow +\infty ,B\rightarrow -\infty}\int_A^{+\infty} \left|f(t)\right|^2 dt+\int^B_{-\infty} \left|f(t)\right|^2 dt=0 A+,BlimA+f(t)2dt+Bf(t)2dt=0

我们希望,时间越趋近于无穷大的时候,能量的作用是趋近于零的。好,这是对 f ( t ) f(t) f(t)的要求,好,我们现在再来看傅里叶变换的基函数。

我们可以看到,傅里叶变换的基函数,都是通过一个 e e e指数类型的三角函数,通过伸缩得到的周期函数。傅里叶逆变换,或者说傅里叶重构中,我们可以看到,它把一系列的周期函数捏成了一个非周期函数 f ( t ) f(t) f(t),还是一个能量有限的周期函数。基函数不在信号空间里头,最后做组合得到的函数,却在信号空间里头,这个事情就非常地让人感到神奇。这就好像一个人照镜子,镜子里面都是猪的嘴巴,狗的眼,每个部位,看着都不是他,最后拼起来一看,诶,还人模人样的,还真是一个人。

数值计算偏差问题

我们一个连续的东西,计算机是没法处理的,它总是把它离散化进行处理,一旦进行离散,而离散是一种近似,必然会带来误差。比如说傅里叶变换的积分,我们让计算机来算,就是算数值积分。一旦用数值积分,就会带来计算上的偏差。如果说这个偏差很小,或者说是可控的,倒是无关紧要。问题是,傅里叶变换对数值误极其敏感。举个例子,有些情况下,你可以控制傅里叶变换的模不变,让它的幅角,想偏多远就偏多远。

不可保性质的问题

试问,一个信号空间内函数的连续性和可导性,能否通过它谱来刻画。这个很难。举个例子, f f f 不连续,在某个点断开了,但是我们可以通过控制他的谱的偏差,使得它回到信号空间变成连续的。这个事情就非常的有意思,就像一个人,比如说我,去森林里面溜达了一圈回来,就变成了一条狗。

问题的本质和根源

出现以上的问题的原因,细细思考,主要集中在两个方面。

第一点,基函数 e i ω t e^{i\omega t} eiωt 不在信号空间里面。这个非常好理解。正余弦函数是周期的,模仿积分是无穷的,不可能在 L 2 L^2 L2 里面。

第二点,我们观察傅里叶变换的表达式。对于谱的计算,每一频率只要变一点点,都需要都计算函数在对应的频率上的成分。分得太细,做的太多了。分得太细,界限就破坏了。界限一旦被破话,就很难分得清楚了。我举一个例子,相信你们都能接受。比如说一只猪和一个人。一只猪,头,四肢,躯干,分开了,放在桌子上。另外是一个人,也是头,四肢,躯干,放在另外桌子上。我相信正常人,都能分辨得清楚,哪个是猪,哪个是人。现在我买来一台绞肉机,把猪毛去了,把人的衣服脱了,放到机器里面,做成肉馅儿。没有人能分得清楚,那一块是人肉馅儿,那一块是猪肉馅。

小波基

基于以上对傅里叶变换的种种不满,有人就想构造一组令满意的基函数。借用以上的思想,我们也考虑一组基函数由一个函数伸缩而来的。

小波定义

ψ ( t ) ∈ L 2 ( R ) \psi(t) \in L^{2}(\mathbb{R}) ψ(t)L2(R),满足,
C ψ = ∫ − ∞ + ∞ ∣ ψ ^ ( ω ) ∣ 2 ∣ ω ∣ d ω < + ∞ C_{\psi}=\int_{-\infty}^{+\infty} \frac{|\hat{\psi}(\omega)|^{2}}{|\omega|} d \omega<+\infty Cψ=+ωψ^(ω)2dω<+
我们称 ψ ( t ) \psi(t) ψ(t) 是一个小波(小波母函数)。这里 C ψ C_{\psi} Cψ 一般成为容许参数。

对于 ∀ a ≠ 0 , b ∈ R \forall a \neq 0 ,b \in \mathbb{R} a=0bR,我们称

ψ ( a , b ) ( t ) = 1 ∣ a ∣ ψ ( t − b a ) \psi_{(a, b)}(t)=\frac{1}{\sqrt{|a|}} \psi\left(\frac{t-b}{a}\right) ψ(a,b)(t)=a 1ψ(atb)
称为连续小波,简称小波。

这里的 b b b 是位移参数, a a a 是尺度参数。小波是什么?小波是基,或者说是一组基,一组满足容许参数有限的一组基。

小波的波形特征

这里提两个小波的特征。

  • 衰减的特征
    ∫ − ∞ + ∞ ∣ ψ ( t ) ∣ 2 d t < + ∞ \int_{-\infty}^{+\infty}|\psi(t)|^{2} d t<+\infty +ψ(t)2dt<+
    ∫ − ∞ + ∞ ∣ ψ ( a , b ) ( t ) ∣ 2 t < + ∞ \int_{-\infty}^{+\infty}\left|\psi_{(a, b)}{(t)}\right|^{2} t< +\infty +ψ(a,b)(t)2t<+
    这个说明他们都是在信号空间里面的。也就是说他们的图像,中间高,两边迅速地衰减。

  • 波动特征:关于某一条水平线,上下面积相等。
    ∫ − ∞ + ∞ ψ ( t ) d t = 0 \int_{-\infty}^{+\infty} \psi(t) d t=0 +ψ(t)dt=0
    ∫ − ∞ + ∞ ψ ( a , b ) ( t ) d t = 0 \int_{-\infty}^{+\infty} \psi_{(a, b)}(t) d t=0 +ψ(a,b)(t)dt=0
    证明复杂,我们可以加一个条件,进行简单证明:
    加的条件: ψ ^ ( ω ) \hat \psi(\omega) ψ^(ω) ω = 0 \omega=0 ω=0 时连续。
    证明如下:
    ψ ^ ( ω ) = 1 2 π ∫ − ∞ + ∞ ψ ( t ) e − i ω t d t \hat \psi(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{+\infty} \psi(t) e^{-i \omega t} d t ψ^(ω)=2π 1+ψ(t)eiωtdt
    只要证 ψ ^ ( 0 ) = 0 \hat{\psi}(0)=0 ψ^(0)=0
    从以下这个有界表达,我们能感受到这一点。
    C ψ = ∫ − ∞ + ∞ ∣ ψ ^ ( ω ) ∣ 2 ∣ ω ∣ d ω < + ∞ C_{\psi}=\int_{-\infty}^{+\infty} \frac{|\hat{\psi}(\omega)|^{2}}{|\omega|} d \omega<+\infty Cψ=+ωψ^(ω)2dω<+

meyer 提出的 wavelet 的概念是什么意思?小小的波纹。从这里就能看出来了。首先要是 L 2 L^2 L2 然后在两端震荡地趋向于 0。参数的影响和 Haar 小波是一样的,位移参数,决定它的移动,尺度参数,决定它的伸缩。类比傅里叶基,用什么来体现它的快慢呢?就是这个尺度参数。 a < 1 a<1 a<1 快变成分, a > 1 a>1 a>1 慢变成分。后面我们会提到,只要考虑 a > 0 a>0 a>0 即可。 a < 0 a<0 a<0 的情况可以通过 a > 0 a>0 a>0 的情况对称地考虑即可。

小波变换

小波变换定义

有了小波基,我们直接给出小波变换的定义。

对于 ∀ f ( t ) ∈ L 2 ( R ) \forall f(t) \in L^{2}(\mathbb{R}) f(t)L2(R)

W f ( a , b ) = ∫ − ∞ + ∞ f ( t ) ψ ‾ ( a , b ) ( t ) d t W_{f}(a, b)=\int_{-\infty}^{+\infty} f(t) \overline{\psi}_{(a, b)}(t) d t Wf(a,b)=+f(t)ψ(a,b)(t)dt
称为信号 f ( t ) f(t) f(t)的小波变换。

从这个表达中,我们可以看得出来,小波变换把只含一个变量的信号,变成了两个参数的函数,一维信号变成了二维的形式,这是个典型的“升维分析”。我们知道,在微积分里面,把一元的东西抬到了二元,一下子变得复杂了,比如说连续、极限是否存在。升维分析在哪里还见过呢?典型的有:SVM、神经网络、水平集方法、用相场模型来研究界面等等。

小波变换的基本性质

研究一个变换,我们经常在乎的是,分析在时频空间是否对等,变换是否可逆、逆变换什么形式、是否正交变换等等。

下面我们来看一下小波变换的基本性质,我们和傅里叶变换做类比。

Parseval恒等式(也称 能量守恒、内积恒等式 、Planch‎erel 定理)

C ψ ⟨ f ( t ) , g ( t ) ⟩ = ⟨ W f ( a , b ) ⋅ W g ( a , b ) ⟩ : = ∬ R × R ∗ W f ( a , b ) ⋅ W ˉ g ( a , b ) d a d b a 2 C_{\psi} \langle f(t), g(t)\rangle= \left\langle W_{f}(a,b) \cdot W_{g}(a,b)\right\rangle:= \iint_{\mathbb{R} \times \mathbb{R}^{*}} W_{f}(a, b) \cdot \bar{W}_{g}(a, b) \frac{d a d b}{a^{2}} Cψf(t),g(t)=Wf(a,b)Wg(a,b):=R×RWf(a,b)Wˉg(a,b)a2dadb
这里的 R ∗ \mathbb{R}^{*} R表示 R \mathbb{R} R挖掉 0 0 0这个点,即
R ∗ = R − { 0 } \mathbb{R}^{*}=\mathbb{R}-\{0\} R=R{0}

需要注意的是,这里多了一个容许参数和积分度量分母上的 a 2 a^2 a2

保长度

C ψ ∥ f ∥ 2 = ∥ W f ( a , b ) ∥ 2 C_{\psi}\|f\|^{2}=\left\|W_{f}(a, b)\right\|^{2} Cψf2=Wf(a,b)2
这里取内积不等式的 g = f g=f g=f直接可以得到。

逆变换

我们可以参照傅里叶逆变换的写法,写出它的逆变换:
f ( t ) = 1 C ψ ∬ R × R ∗ W f ( a , b ) ψ ( a , b ) ( t )  dadb  a 2 f(t)=\frac{1}{C_{\psi}} \iint_{\mathbb{R} \times\mathbb{ R}^{*}} W_{f}\left(a, b\right) \psi_{(a, b)}{(t)} \frac{\text { dadb }}{a^{2}} f(t)=Cψ1R×RWf(a,b)ψ(a,b)(t)a2 dadb 

注释:
1、这里的等号是“几乎处处”相等
2、当 f f f t = t 0 t=t_0 t=t0连续时,变成了数值相等,即
f ( t 0 ) = 1 C ψ ∬ R × R ∗ W f ( a , b ) ψ ( a , b ) ( t 0 )  dadb  a 2 f(t_0)=\frac{1}{C_{\psi}} \iint_{\mathbb{R} \times \mathbb{R}^{*}} W_{f}\left(a, b\right) \psi_{(a, b)}{(t_0)} \frac{\text { dadb }}{a^{2}} f(t0)=Cψ1R×RWf(a,b)ψ(a,b)(t0)a2 dadb 

从这里的第 2 条,可以很容易得到第一条。即因为 f ( t ) f(t) f(t) 满足
∫ − ∞ + ∞ ∣ f ( t ) ∣ 2 d t < + ∞ \int_{-\infty}^{+\infty}|f(t)|^{2} d t<+\infty +f(t)2dt<+
所以,它一定是几乎处处连续的,那么小波逆变换就是几乎处处成立的。

逆变换直接有内积恒等式得到,只不过把 g g g取成了 δ \delta δ函数。

其他性质

我们再看,是不是酉变换变换呢?从这个共轭符号,可以看出来其体现了正交变换的风格,但不是严格的那样,因为容许参数不等于 1,就未必是正交变换。

傅里叶变换的卷积公式还有没有呢?卷积公式,本质上是说找到一组新基,对应一个矩阵,这个矩阵是一个对角矩阵。小波变换,其实时一种近似对角,而不是严格的对角。

小波变换的一些分析

我们看逆变换里面的这个测度:
 dadb/a  2 \text { dadb/a }^{2}  dadb/a 2

我们仔细看逆变换, a a a 的大小对于不同的连续小波它的影响是不一样的。 a a a 越小,越靠近 0 的时候,对 f ( t ) f(t) f(t) 的影响越大,反之亦然。 W W W 的前面的权重是不一样。所以我们再做数值计算,数值积分的时候,对于 a a a ,越靠近 0 0 0 取的点应该越密集。逆变换告诉我们,小波变换对于变换的结果不是一视同仁的。不同 a a a 小的小波,他的贡献是不一样的,这点在理论分析和数值计算上很重要。 a > 1 a>1 a>1 做的马虎一点,影响不大。

从这一点来说,小波变换和之前所说的变换,有本质的不同。

吸收小波

吸收小波引入

前面说,小波变换把一维信号,变成二维信号。低维变成了高维,有没有什么办法,能够省点计算量呢。

我们先看傅里叶变换,
f ^ ( ω ) = ∫ − ∞ + ∞ f ( t ) e − i ω t d t \hat{f}(\omega)=\int_{-\infty}^{+\infty} f(t) e^{-i \omega t} d t f^(ω)=+f(t)eiωtdt
它要想省点计算,基函数限定死了,我们只能从信号上下功夫。因为 f ( t ) f(t) f(t) 是实信号,我们有
f ^ ˉ ( ω ) = ∫ − ∞ + ∞ f ( t ) e ( − i ) ( − ω ) t d t = f ^ ( − ω ) \begin{aligned} \bar{\hat f}(\omega) &=\int_{-\infty}^{+\infty} f(t) e^{(-i)(-\omega) t} d t \\ &=\hat{f}(-\omega) \end{aligned} f^ˉ(ω)=+f(t)e(i)(ω)tdt=f^(ω)
从这里我们知道,实际上,我们把傅里叶变换的计算量做了一个折叠,只要计算一半就可以了。除此之外,还要别的办法吗?没有。因为傅里叶变换的基函数已经限定死了。

吸收小波定义

对小波分析,如何减少分析工作量?变换域的分析是等价的,只要去 C ψ C_\psi Cψ是有限。从这里,我们定义吸收条件

∫ 0 + ∞ ∣ ψ ^ ( ω ) ∣ 2 ω d ω = ∫ 0 + ∞ ∣ ψ ^ ( − ω ) ∣ 2 ω d ω \int_{0}^{+\infty} \frac{|\hat{\psi}(\omega)|^{2}}{\omega} d \omega=\int_{0}^{+\infty} \frac{|\hat \psi(-\omega)|^2}{\omega} d \omega 0+ωψ^(ω)2dω=0+ωψ^(ω)2dω

我们称,满足这个吸收条件的小波,叫做吸收小波。

吸收小波性质

类比小波的性质,我们可以看吸收小波的性质。

  • 吸收恒等式
    C ψ ⟨ f ( t ) , g ( t ) ⟩ = 2 ∬ R × R + W f ( a , b ) ⋅ W ˉ g ( a , b ) d a d b a 2 C_{\psi} \langle f(t), g(t)\rangle= 2\iint_{\mathbb{R} \times \mathbb{R}^{+}} W_{f}(a, b) \cdot \bar{W}_{g}(a, b) \frac{d a d b}{a^{2}} Cψf(t),g(t)=2R×R+Wf(a,b)Wˉg(a,b)a2dadb
  • 模长关系
    C ψ ∥ f ∥ 2 = 2 ∥ W f ( a , b ) ∥ 2 C_{\psi}\|f\|^{2}=2\left\|W_{f}(a, b)\right\|^{2} Cψf2=2Wf(a,b)2
  • 逆变换
    KaTeX parse error: Got function '\left' with no arguments as subscript at position 86: …f}{(a, b)}\psi_\̲l̲e̲f̲t̲(a_{}, b\right)…

= 号依然是几乎处处。

吸收小波告诉我们,要分析小波变换,只要对 a > 0 a>0 a>0 的那部分连续小波变换的分析就可以了。

二进小波

二进小波的定义

人心不足蛇吞象。更近一步,我们想取离散的一些连续小波变换的取值,能做到吗?从前面的分析我们知道,不同的连续小波的重要程度是不一样的,所以我们对 a a a 不能是均等的取。是不是可以从对数的角度来考虑,又是均等的呢?

我们希望对原来的基函数本身施加更苛刻的条件,使得原来的信号 f ( t ) f(t) f(t)能够更好地凝聚,凝聚到一些离散 a a a 的点上。其实,施加更严苛的条件,使得只要在对 a a a 2 2 2的整数次幂的地方的值就可以了。

ψ ( t ) \psi(t) ψ(t) 满足下述的稳定性条件,
0 < A ⩽ ∑ j = − ∞ + ∞ ∣ ψ ^ ( 2 − j ω ) ∣ 2 ⩽ B < + ∞ , 0<A \leqslant \sum_{j=-\infty}^{+\infty}\left|\hat{\psi}\left(2^{-j} \omega\right)\right|^{2} \leqslant B<+\infty, 0<Aj=+ψ^(2jω)2B<+,
则称 ψ ( t ) \psi(t) ψ(t) 是二进小波。对几乎处处的 ω ∈ R \omega \in \mathbb{R} ωR成立即可。

注意这个稳定性条件,需要取全部的 ω \omega ω 吗?其实只需要 1 ≤ ω ≤ 2 1\leq\omega\leq2 1ω2

这时,逆变换可以写为:
f ( t ) = ∑ j = − ∞ + ∞ 2 j ∫ − ∞ + ∞ W f ( 2 − j , b ) τ ( 2 − j , b ) ( t ) d b f(t)=\sum_{j=-\infty}^{+\infty} 2^{j} \int_{-\infty}^{+\infty} W_{f}\left(2^{-j} , b\right) \tau_{(2^{-j} , b)}(t) d b f(t)=j=+2j+Wf(2j,b)τ(2j,b)(t)db
其中, τ ( t ) \tau(t) τ(t) 满足,
∑ j = − ∞ + ∞ ψ ^ ˉ ( 2 − j ω ) τ ^ ( 2 − j ω ) ≡ 1 , a . e . , ω ∈ R \sum_{j=-\infty}^{+\infty} \bar {\hat{\psi}}\left(2^{-j} \omega\right) \hat{\tau}\left(2^{-j}\omega \right) \equiv 1, a .e. , \omega \in \mathbb{R} j=+ψ^ˉ(2jω)τ^(2jω)1,a.e.,ωR
称之为 ψ ( t ) \psi(t) ψ(t) 的“重构小波”。

重构小波讨论

二进小波告诉我们,在 a = 2 − j a=2^{-j} a=2j 这些点上的离散取值进行分析即可。
当稳定性条件中 A=B=1的时候, τ \tau τ 取成$ \psi$ 就可以了。但是这个条件,一般不满足,所以所以出现了重构小波。
ψ ( t ) \psi(t) ψ(t) 用于分解,做小波变换。 τ ( t ) \tau(t) τ(t) 用于重构,做逆变换。

τ ( t ) \tau(t) τ(t) 一定可以找到吗?简单地,我们如果取
τ ^ ( ω ) = ψ ^ ( ω ) / ∑ j ∈ Z ∣ ψ ^ ( 2 − i ω ) ∣ 2 \hat{\tau}(\omega)=\hat{\psi}(\omega) / \sum_{j \in Z}\left|\hat{\psi}\left(2^{-i} \omega\right)\right|^{2} τ^(ω)=ψ^(ω)/jZψ^(2iω)2
可以看得出来,重构小波的条件是被满足的。

容易证明,$ \tau$ 是能量有限的,它也是吸收的,不仅吸收的,还是二进小波。
查文献可以知道,$ \tau$ 不是唯一的,但是不同的 τ \tau τ之间,是有一定联系的。

正交小波

二进小波告诉我们,连续小波变换域里只需要分析被 2 2 2的整数次幂的方式离散的那些 a a a对应的小波即可。这里还有一个心病,就是 b b b b b b 还是整个一维的变量。是否存在它的某种离散方式呢?有人试图证明没有。证明过程中,却构造出来了,不仅有,而且有很多,按部就班地构造出来,这就是正交小波。正交小波好像也是 meyer 提出的概念。

正交小波定义:

ψ ( t ) \psi(t) ψ(t)满足,
{ ψ j , k ( t ) = 2 j / 2 ψ ( 2 j t − k ) ; ( j , k ) ∈ Z 2 } \left\{\psi_{j, k}(t)=2^{j / 2} \psi(2^jt-k) ; (j,k)\in Z^{2}\right\} {ψj,k(t)=2j/2ψ(2jtk);(j,k)Z2}
构成 L 2 ( R ) L^2(\mathbb{R}) L2(R)的标准正交基(O.N.B),则称 ψ ( t ) \psi(t) ψ(t)是正交小波。

其实就是小波取 a = 2 − j , b = 2 − j k a = 2^{-j}, b=2^{-j}k a=2j,b=2jk 的那些基是正交的。

那么信号就可以写成这一组基的线性组合,

f ( t ) = ∑ j = − ∞ + ∞ ∑ k = − ∞ + ∞ α j , k ψ j , k ( t ) f(t)=\sum_{j=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} \alpha_{j, k} \psi_{j, k}(t) f(t)=j=+k=+αj,kψj,k(t)

写到这,似乎都没有新东西,这不就是简单的线性代数,没什么了不起的。巧就巧在,我们看这个系数的表达,
α j , k = ∫ − ∞ ∞ f ( t ) ψ ˉ j , k ( t ) d t = W f ( 2 − j , 2 − j k ) \alpha_{j, k}=\int_{-\infty}^{\infty} f(t) \bar{\psi}_{j, k}(t) d t =W_{f}\left(2^{-j}, 2^{-j} k\right) αj,k=f(t)ψˉj,k(t)dt=Wf(2j,2jk)
它刚好是信号在这些 j , k j,k j,k离散点上的投影。完整地把信号表达出来,就是
f ( t ) = ∑ j = − ∞ + ∞ ∑ k = − ∞ + ∞ W f ( 2 − j , 2 − j k ) ψ j , k ( t ) f(t)=\sum_{j=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} W_{f}\left(2^{-j}, 2^{-j} k\right) \psi_{j, k}(t) f(t)=j=+k=+Wf(2j,2jk)ψj,k(t)

这里的位移 b b b 变成和尺度参数 a a a 有关联了。
正交小波说明了什么?我们仅仅只要分析,连续小波变换在 a a a b b b的一些离散点上的分析。这也正是正交小波令人鼓掌的地方。

小波与采样

香农采样定理

我们知道,连续的东西在计算机上是不能表达的。所以我们希望通过离散的一些取值来刻画一个连续的东西。香农采样定理说的就是这样一个事情。
香农采样定理:
f ( t ) = ∑ n ∈ Z f ( n Δ ) sin ⁡ π Δ ( t − n Δ ) π Δ ( t − n Δ ) f(t)= \sum_{n \in \mathbb{Z}} f(n \Delta)\frac{\sin \frac{\pi}{\Delta}(t-n \Delta)}{\frac{\pi}{\Delta}(t-n \Delta)} f(t)=nZf(nΔ)Δπ(tnΔ)sinΔπ(tnΔ)
这是香农采样定理最原始的形式。这里我的条件没写全。要求 f ( t ) f(t) f(t)的谱是截断的(频率截断的,或者说是带限信号,低通信号),采样间隔满足一定的条件,和截断的支集关联,支集越小,采样间隔就可以放大一些。

具体写出来: f ∈ U Δ f \in U_{\Delta} fUΔ
U Δ : = { f : supp ⁡ f ^ ⊂ [ − π / Δ , π / Δ ] } U_{\Delta}:=\{f: \operatorname{supp} \hat{f} \subset[-\pi /\Delta, \pi / \Delta]\} UΔ:={f:suppf^[π/Δ,π/Δ]}

小波采样定理


f ( t ) = ∑ j = − ∞ + ∞ ∑ k = − ∞ + ∞ W f ( 2 − j , 2 − j k ) ψ j , k ( t ) f(t)=\sum_{j=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} W_{f}\left(2^{-j}, 2^{-j} k\right) \psi_{j, k}(t) f(t)=j=+k=+Wf(2j,2jk)ψj,k(t)
代入,
W f ( a , b ) = ∫ − ∞ + ∞ f ( t ) ψ ‾ ( a , b ) ( t ) d t W_{f}(a, b)=\int_{-\infty}^{+\infty} f(t) \overline{\psi}_{(a, b)}(t) d t Wf(a,b)=+f(t)ψ(a,b)(t)dt
非常容易得到,
W f ( a , b ) = ∑ j = − ∞ + ∞ ∑ k = − ∞ + ∞ W f ( 2 − j , 2 − j k ) × ∫ R ψ j , k ( t ) ψ ( a , b ) ‾ ( t ) d t W_{f}(a, b) =\sum_{j=-\infty}^{+\infty} \sum_{k=-\infty}^{+\infty} W_{f}\left(2^{-j }, 2^{-j } k\right)\times \int_\mathbb{R} \psi_{j,k}(t)\overline {\psi_{(a,b)}}(t)dt Wf(a,b)=j=+k=+Wf(2j,2jk)×Rψj,k(t)ψ(a,b)(t)dt

乘号后面是一个只跟 a , b , j , k a,b,j,k a,b,j,k 有关的函数。

采样定理比较

从这里可以看到,连续小波变换可以通过离散取值,实现重建。比起香农采样,这里的 f ( t ) f(t) f(t),只要在信号空间中,似乎没有任何限制,都可以这么干。

小波采样定理告诉我们,一个信号的连续小波变换,信息被凝聚到了一些离散的点上面。所以我们只要直接了当地知道这些离散的点上的取值是多少,别的地方的值等于多少,其实也就知道了。

对于傅里叶变换而言,如果对谱进行了采样,
f ( ω l ) = ∫ − ∞ + ∞ f ( t ) e − i ω l t d t f(\omega_l)=\int_{-\infty}^{+\infty} f(t) e^{-i \omega_l t} d t f(ωl)=+f(t)eiωltdt
它是不能够重建连续傅里叶变换的信息点的。采样就相当于把一个信号周期化了,跑出信号空间。这是因为可共度的周期函数的离散和还是周期函数。

后续内容

如何构造正交小波?如何改进得到的正交小波得到多个正交小波 ?这就是多分辨分析的内容。得不到正交小波,我们也可以放宽条件,构造双正交小波。

参考和致谢

《Nonlinear approximation》 Ronald A. Devore 剑桥大学出版社

《小波十讲》Ingrid Daubechies 李建平等译 国防工业出版社

《小波与算子》(第一卷 ) Y.Meyer 尤众译 世界图书出版社

《小波变换与分数傅里叶变换:理论及应用》 冉启文 哈尔滨工业大学出版社

“小波理论及应用” 冉启文 【哈尔滨工业大学】

相关的 Wikipedia 和网络资料

《时间序列分析的小波方法》

《小波时间序列分析法》

《小波的理论与应用》 成礼智科学出版社

相关推荐
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页