数分习题的若干问题说明(持续扩展补充)

数分习题的若干问题说明

原函数可导,导函数未必连续

 证 明 函数  \begin{array}{ll}\text { 证 明 函数 }\end{array}    函数 
f ( x ) = { e − 1 x 2 , x ≠ 0 0 , x = 0 f(x)=\left\{\begin{array}{ll} \mathrm{e}^{-\frac{1}{x^{2}}}, & x \neq 0 \\ 0, & x=0 \end{array}\right. f(x)={ex21,0,x=0x=0
x = 0 x=0 x=0 n n n 阶可导且 f ( n ) ( 0 ) = 0 , f^{(n)}(0)=0, f(n)(0)=0, 其中 n n n 为任意正整数.

证明:
根据可导的定义,我们只要证明,
f ( k + 1 ) ( 0 ) = lim ⁡ x → 0 f ( k ) ( x ) − f ( k ) ( 0 ) x − 0 = 0 f^{(k+1)}(0)=\lim _{x \rightarrow 0} \frac{f^{(k)}(x)-f^{(k)}(0)}{x-0}=0 f(k+1)(0)=x0limx0f(k)(x)f(k)(0)=0
这里的 k k k为大等于 0 的整数。下面用数学归纳法来证明这个事情。
k = 0 k=0 k=0 时,
f ′ ( 0 ) = lim ⁡ x → 0 f ( x ) − f ( 0 ) x − 0 = lim ⁡ x → 0 e − 1 x 2 x = lim ⁡ t → ∞ t e t 2 = 0 f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{\mathrm{e}^{-\frac{1}{x^{2}}}}{x}=\lim _{t \rightarrow \infty} \frac{t}{\mathrm{e}^{t^2}}=0 f(0)=x0limx0f(x)f(0)=x0limxex21=tlimet2t=0
这里进行了换元,即令 t = 1 / x t=1/x t=1/x
假设当 k = n k=n k=n 的时候成立,
f ( n + 1 ) ( 0 ) = lim ⁡ x → 0 f ( n ) ( x ) − f ( n ) ( 0 ) x − 0 = 0 f^{(n+1)}(0)=\lim _{x \rightarrow 0} \frac{f^{(n)}(x)-f^{(n)}(0)}{x-0}=0 f(n+1)(0)=x0limx0f(n)(x)f(n)(0)=0
那么,当 k = n + 1 k=n+1 k=n+1时,我们想要证明,
f ( n + 2 ) ( 0 ) = lim ⁡ x → 0 f ( n + 1 ) ( x ) − f ( n + 1 ) ( 0 ) x − 0 = lim ⁡ x → 0 f ( n + 1 ) ( x ) x = 0 f^{(n+2)}(0)=\lim _{x \rightarrow 0} \frac{f^{(n+1)}(x)-f^{(n+1)}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{f^{(n+1)}(x)}{x}=0 f(n+2)(0)=x0limx0f(n+1)(x)f(n+1)(0)=x0limxf(n+1)(x)=0

若我们可以证明,当 x ≠ 0 x\neq 0 x=0 时,具有表达,
f ( n ) ( x ) = p ( 1 x ) e − 1 x 2 , ( n = 1 , 2 , ⋯   ) (*) f^{(n)}(x)=p\left(\frac{1}{x}\right) \mathrm{e}^{-\frac{1}{x^{2}}},(n=1,2, \cdots) \tag{*} f(n)(x)=p(x1)ex21,(n=1,2,)(*)

这里的 p p p 表示多项式。则有,
lim ⁡ x → 0 f ( n + 1 ) ( x ) x = lim ⁡ x → 0 1 x p ( 1 x ) e − 1 x 2 = 0 \lim _{x \rightarrow 0} \frac{f^{(n+1)}(x)}{x}=\lim _{x \rightarrow 0} \frac{1}{x}p\left(\frac{1}{x}\right){e}^{-\frac{1}{x^{2}}} =0 x0limxf(n+1)(x)=x0limx1p(x1)ex21=0

下面我们同样用归纳法来证明 (*) 式,

n n n 取 1 时,
f ′ ( x ) = 2 x 3 e − 1 x 2 f^{\prime}(x)=\frac{2}{x^{3}} \mathrm{e}^{-\frac{1}{x^{2}}} f(x)=x32ex21
假设 n n n 的情况下成立,那么,当取 n + 1 n+1 n+1 时,

f ( n + 1 ) ( x ) = ( p ( 1 x ) e − 1 x 2 ) ′ = − 1 x 2 p ′ ( 1 x ) e − 1 x 2 + p ( 1 x ) e − 1 x 2 ( 2 x − 3 ) = q ( 1 x ) e − 1 x 2 f^{(n+1)}(x)=(p\left(\frac{1}{x}\right) \mathrm{e}^{-\frac{1}{x^{2}}})\prime=-\frac{1}{x^2}p'(\frac{1}{x}) \mathrm{e}^{-\frac{1}{x^{2}}}+p(\frac{1}{x}) \mathrm{e}^{-\frac{1}{x^{2}}}(2x^{-3})=q(\frac{1}{x}) \mathrm{e}^{-\frac{1}{x^{2}}} f(n+1)(x)=(p(x1)ex21)=x21p(x1)ex21+p(x1)ex21(2x3)=q(x1)ex21

这里的 q q q 表示一个多项式。 证毕。

事实上,可以把两个归纳过程,合成一个归纳过程来写,注意逻辑关系。

参量方程问题

对于利用参量方程求斜率,
d y d x = d y d t ⋅ d t d x = d y d t / d x d t \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{\mathrm{d} y}{\mathrm{d} t} \cdot \frac{\mathrm{d} t}{\mathrm{d} x}=\frac{\mathrm{d} y}{\mathrm{d} t} / \frac{\mathrm{d} x}{\mathrm{d} t} dxdy=dtdydxdt=dtdy/dtdx
和利用参量方程求向径和切线夹角的正切公式,
tan ⁡ φ = r ( θ ) r ′ ( θ ) \tan \varphi=\frac{r(\theta)}{r^{\prime}(\theta)} tanφ=r(θ)r(θ)

如果分母为 0 的情况是否需要单独考虑?

答:严格来说,需要分类讨论, r ′ ( θ ) = 0 r^{\prime}(\theta)=0 r(θ)=0,那么夹角就是 90 度。 d x / d t = 0 \mathrm{d}x/\mathrm{dt}=0 dx/dt=0,说明 x x x 等于常数。那么曲线的参量方程就变成了垂直于 x x x 轴的直线,斜率为无穷大。

关于向径和切线的夹角

计算向径和切线夹角的时候,考虑射线和直线的夹角,计算的是钝角还是锐角,还是都可以?
一般就不超过 π \pi π,用公式算就可以。算出来的结果,不需要用 π / 2 \pi/2 π/2 再减掉它。

一致连续和Cauchy列到Cauchy列的充要性

I I I 为有限区间 , f ( x ) , f(x) ,f(x) I I I 上有定义,试证: f ( x ) f(x) f(x) I I I 上一致连续充要条件是 f f f 把 Cauchy 序列映射为 Cauchy 序列 。
证明:
必要性 :
已 知 ∀ ε > 0 , ∃ δ > 0 , \forall \varepsilon>0, \exists \delta>0, ε>0,δ>0, x ′ , x ′ ′ ∈ I , ∣ x ′ − x ′ ′ ∣ < δ x^{\prime}, x^{\prime \prime} \in I, \left|x^{\prime}-x^{\prime \prime}\right|<\delta x,xI,xx<δ 时,有
∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ε \left|f\left(x^{\prime}\right)-f\left(x^{\prime \prime}\right)\right|<\varepsilon f(x)f(x)<ε
{ x n } \{x_{n}\} {xn} 为 Cauchy 序列,则对此 δ > 0 , ∃ N > 0 , \delta>0, \exists N>0, δ>0,N>0, n , m > N n, m>N n,m>N 时,有
∣ x n − x m ∣ < δ , \left|x_{n}-x_{m}\right|<\delta, xnxm<δ, 从而,
∣ f ( x n ) − f ( x m ) ∣ < ε \left|f\left(x_{n}\right)-f\left(x_{m}\right)\right|<\varepsilon f(xn)f(xm)<ε
所以 { f ( x n ) } \left\{ f\left(x_{n}\right)\right\} {f(xn)} 亦为 Cauchy 序列.

充分性:
反证,
f ( x ) f(x) f(x) I I I 上非一致连续,则 ∃ ε n > 0 , ∀ δ n = 1 n > 0 , ∃ x n , x n ′ ∈ I : \exists \varepsilon_{n}>0, \forall \delta_{n}=\frac{1}{n}>0, \exists x_{n}, x_{n}^{\prime} \in I: εn>0,δn=n1>0,xn,xnI: ∣ x n − x n ′ ∣ < 1 n \left|x_{n}-x_{n}^{\prime}\right|<\frac{1}{n} xnxn<n1,但
∣ f ( x n ) − f ( x n ′ ) ∣ ⩾ ε n ( n = 1 , 2 , ⋯   ) \left|f\left(x_{n}\right)-f\left(x_{n}^{\prime}\right)\right| \geqslant \varepsilon_{n} \quad(n=1,2, \cdots) f(xn)f(xn)εn(n=1,2,)
注意到 I I I 为有限区间 , x n ∈ I ( n = 1 , 2 , ⋯   ) x_{n} \in I(n=1,2, \cdots) xnI(n=1,2,), 由致密性定理,因此 { x n } \left.\{x_{n}\right\} {xn} 中存在收敛的子序列 { x n k } \left\{x_{n_{k}}\right\} {xnk} ,因 lim ⁡ n → ∞ ∣ x n − x n ′ ∣ = 0 \lim\limits_{n\rightarrow \infty}\left|x_{n}-x_{n}^{\prime}\right| =0 nlimxnxn=0 , 故 ∣ x n ′ ∣ \left|x_{n}^{\prime}\right| xn 中相应的子序列 { x n k ′ } \left\{x_{n_{k}}^{\prime} \right\} {xnk} 也收敛于相同的极限。而穿插之后,序列
x n 1 , x n 1 ′ , x n 2 , x n 2 ′ , ⋯   , x n k , x n k ′ , ⋯ x_{n_{1}}, x_{n_{1}}^{\prime}, x_{n_{2}}, x_{n_{2}}^{\prime}, \cdots, x_{n_{k}}, x_{n_{k}}^{\prime}, \cdots xn1,xn1,xn2,xn2,,xnk,xnk,
亦收敛,为 Cauchy 序列。但其像序列
f ( x n 1 ) , f ( x x 1 ′ ) , f ( x n 2 ) , f ( x n 2 ′ ) , ⋯   , f ( x n 4 ) , f ( x n 1 ′ ) ⋯ f\left(x_{n_{1}}\right), f\left(x_{x_{1}}^{\prime}\right), f\left(x_{n_{2}}\right), f\left(x_{n_{2}}^{\prime}\right), \cdots, f\left(x_{n_{4}}\right), f\left(x_{n_{1}}^{\prime}\right) \cdots f(xn1),f(xx1),f(xn2),f(xn2),,f(xn4),f(xn1)
恒有 ∣ f ( x n i ) − f ( x n k ′ ) ∣ ⩾ ε 0 \left|f\left(x_{n_{i}}\right)-f\left(x_{n_{k}}^{\prime}\right)\right| \geqslant \varepsilon_{0} f(xni)f(xnk)ε0,不是 Cauchy 列,与已知条件矛盾。

I I I 的有限性只在充分性用到。 对无穷区问,必要性仍成立。

和多项式系正交的连续函数的零点估计

证明:
f f f [ a , b ] [a, b] [a,b] 上连续, 且 ∫ a b f ( x ) d x = ∫ a b x f ( x ) d x = 0 , \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} x f(x) \mathrm{d} x=0, abf(x)dx=abxf(x)dx=0, 则在 ( a , b ) (a, b) (a,b) 内至少存在两点 x 1 , x 2 , x_{1}, x_{2}, x1,x2,
使 f ( x 1 ) = f ( x 2 ) = 0 , f\left(x_{1}\right)=f\left(x_{2}\right)=0, f(x1)=f(x2)=0, 又若 ∫ a b x 2 f ( x ) d x = 0 , \int_{a}^{b} x^{2} f(x) \mathrm{d} x=0, abx2f(x)dx=0, 这时 f f f [ a , b ] [a, b] [a,b] 内是否至少有三个零点?

证:
(1) 假设 f f f没零点,则 ∫ a b f ( x ) d x ≠ 0 \int_{a}^{b} f(x) \mathrm{d} x\neq 0 abf(x)dx=0,矛盾,故至少有一个零点 x 1 x_1 x1
(2)假设 f f f只有一个零点 x 1 x_1 x1,则 f ( x ) f(x) f(x) x 1 x_1 x1两边异号,否则, ∫ a b f ( x ) d x ≠ 0 \int_{a}^{b} f(x) \mathrm{d} x\neq 0 abf(x)dx=0,矛盾。那么, f 1 ( x ) = ( x − x 1 ) f ( x ) f_1(x)=(x-x_1)f(x) f1(x)=(xx1)f(x) [ a , b ] [a,b] [a,b]上同号,这和 ∫ a b f 1 ( x ) d x = 0 \int_{a}^{b} f_1(x) \mathrm{d} x=0 abf1(x)dx=0矛盾,所以, f ( x ) f(x) f(x)至少有两个零点 x 1 , x 2 x_1,x_2 x1,x2
(3)假设 f f f只有两个零点 x 1 , x 2 x_1,x_2 x1,x2(不妨设 x 1 < x 2 x_1<x_2 x1<x2),只要证得 f ( x ) f(x) f(x) x 1 , x 2 x_1,x_2 x1,x2两边的区间段异号,那么,就有 f 2 ( x ) = ( x − x 1 ) ( x − x 2 ) f ( x ) f_2(x)=(x-x_1)(x-x_2)f(x) f2(x)=(xx1)(xx2)f(x) [ a , b ] [a,b] [a,b]上同号,这和 ∫ a b f 2 ( x ) d x = 0 \int_{a}^{b} f_2(x) \mathrm{d} x=0 abf2(x)dx=0矛盾,所以, f ( x ) f(x) f(x)至少有三个零点 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3。下不妨证, f ( x ) f(x) f(x) ( a , x 1 ) (a,x_1) (a,x1) ( x 1 , x 2 ) (x_1,x_2) (x1,x2)上异号(利用 ∫ a b f ( x ) d x = ∫ a b x f ( x ) d x = 0 \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} x f(x) \mathrm{d} x=0 abf(x)dx=abxf(x)dx=0)。
利用中值定理,

∫ a b f ( x ) d x = ∫ a x 1 f ( x ) d x + ∫ x 1 x 2 f ( x ) d x + ∫ x 2 b f ( x ) d x = 0 \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{x_{1}} f(x) \mathrm{d} x+\int_{x_{1}}^{x_{2}} f(x) \mathrm{d} x+\int_{x_{2}}^{b} f(x) \mathrm{d} x=0 abf(x)dx=ax1f(x)dx+x1x2f(x)dx+x2bf(x)dx=0

∫ x 2 b f ( x ) d x = − ∫ a x 1 f ( x ) d x − ∫ x 1 x 2 f ( x ) d x \int_{x^{2}}^{b} f(x) \mathrm{d} x=-\int_{a}^{x_{1}} f(x) \mathrm{d} x-\int_{x_{1}}^{x_{2}} f(x) \mathrm{d} x x2bf(x)dx=ax1f(x)dxx1x2f(x)dx
再根据积分中值定理,
∫ a b x f ( x ) d x = ∫ a x 1 x f ( x ) d x + ∫ x 1 x 2 x f ( x ) d x + ∫ x 2 b x f ( x ) d x = ξ 1 ∫ a x 1 f ( x ) d x + ξ 2 ∫ x 1 x 2 f ( x ) d x + ξ 3 [ − ∫ a x 1 f ( x ) d x − ∫ x 1 x 2 f ( x ) d x ] = ( ξ 1 − ξ 3 ) ∫ a x 1 f ( x ) d x + ( ξ 2 − ξ 3 ) ∫ x 1 x 2 f ( x ) d x = 0 \begin{aligned} &\int_{a}^{b} x f(x) \mathrm{d} x=\int_{a}^{x_{1}} x f(x) \mathrm{d} x+\int_{x_{1}}^{x_{2}} x f(x) \mathrm{d} x+\int_{x_{2}}^{b} x f(x) \mathrm{d} x \\ &=\xi_{1} \int_{a}^{x_{1}} f(x) \mathrm{d} x+\xi_{2} \int_{x_{1}}^{x_{2}} f(x) \mathrm{d} x+\xi_{3}\left[-\int_{a}^{x_{1}} f(x) \mathrm{d} x-\int_{x_{1}}^{x_{2}} f(x) \mathrm{d} x\right] \\ &=\left(\xi_{1}-\xi_{3}\right) \int_{a}^{x_{1}} f(x) \mathrm{d} x+\left(\xi_{2}-\xi_{3}\right) \int_{x_{1}}^{x_{2}} f(x) \mathrm{d} x=0 \end{aligned} abxf(x)dx=ax1xf(x)dx+x1x2xf(x)dx+x2bxf(x)dx=ξ1ax1f(x)dx+ξ2x1x2f(x)dx+ξ3[ax1f(x)dxx1x2f(x)dx]=(ξ1ξ3)ax1f(x)dx+(ξ2ξ3)x1x2f(x)dx=0
其中, a < ξ 1 < x 1 < ξ 2 < x 2 < ξ 3 < b a<\xi_{1}<x_{1}<\xi_{2}<x_{2}<\xi_{3}<b a<ξ1<x1<ξ2<x2<ξ3<b。立得 ∫ a x 1 f ( x ) d x \int_{a}^{x_{1}} f(x) \mathrm{d} x ax1f(x)dx ∫ x 1 x 2 f ( x ) d x \int_{x_{1}}^{x_{2}} f(x) \mathrm{d} x x1x2f(x)dx 异号。从而 f ( x ) f(x) f(x) ( a , x 1 ) (a,x_1) (a,x1) ( x 1 , x 2 ) (x_1,x_2) (x1,x2)上异号。

此题可以类推到更一般的情况,即 ∫ a b x k f ( x ) d x = 0 , k = 0 , 1 , 2 , . . . , m \int_{a}^{b} x^k f(x) \mathrm{d} x=0,k=0,1,2,...,m abxkf(x)dx=0,k=0,1,2,...,m,则 f ( x ) f(x) f(x)有至少 m + 1 m+1 m+1个零点。证明方式同上,假设只有 x 1 < x 2 < . . . < x m x_1<x_2<...<x_m x1<x2<...<xm个零点,那么利用 ∫ a b x k f ( x ) d x = 0 , k = 0 , 1 , 2 , . . . , m − 1 \int_{a}^{b} x^k f(x) \mathrm{d} x=0,k=0,1,2,...,m-1 abxkf(x)dx=0,k=0,1,2,...,m1,我们可以证明 f f f x i x_i xi两边异号,则 ( x − x 1 ) ( x − x 2 ) . . . ( x − x m ) f ( x ) (x-x_1)(x-x_2)...(x-x_m)f(x) (xx1)(xx2)...(xxm)f(x) [ a , b ] [a,b] [a,b]上不变号,这与其在 [ a , b ] [a,b] [a,b]上的积分为0,矛盾,故至少有 m m m个零点。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 点我我会动 设计师:上身试试 返回首页