数学分析中的点荟萃(持续补充修缮)

数学分析中的点荟萃(持续补充)

导数篇

常用求导公式

( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}} (arcsinx)=1x2 1
( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)^{\prime}=-\frac{1}{\sqrt{1-x^{2}}} (arccosx)=1x2 1
( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)^{\prime}=\frac{1}{1+x^{2}} (arctanx)=1+x21
( arccot ⁡ x ) ′ = − 1 1 + x 2 (\operatorname{arccot} x)^{\prime}=-\frac{1}{1+x^{2}} (arccotx)=1+x21

导数技巧

  • 善于利用 ( e M N ) ′ = e M ( N ′ + M ′ N ) (e^{MN})'=e^M(N'+M'N) (eMN)=eM(N+MN)
  • 习惯地吧 a n \sqrt[n]{a} na 写成分数指数的形式。
  • 常用手段: a b = e b ln ⁡ a a^b=e^{b\ln a} ab=eblna
  • 要用到罗尔定理的证明题,当构造不出导函数是含 ξ \xi ξ的那个表达式时,不妨添加一个 x n x^n xn上去,即
    f ′ ( ξ ) = 0 ⇔ ξ n f ′ ( ξ ) = 0 f'(\xi)=0 \Leftrightarrow \xi^n f'(\xi)= 0 f(ξ)=0ξnf(ξ)=0
  • 用微分中值定理做不出来的时候,不妨试一下柯西中值定理,别在一棵树上吊死,左右开弓,同时向标准结果推进。
  • 可导一定连续,但是不连续并不代表不可导。连续点的导数可以用求导法则求,这和定义法求导是一致的,不连续点的导数只能用定义求。
  • 分段函数在断点处是否连续,只要看上下两段是否能通过极限接上。
  • x x x^x xx求导,不能简单利用复合函数求导。
  • 要用求导规则求函数在一个点处的导数,首先要判断在这一点处是连续的,不连续只能用定义。
  • 证明题可以先想好用什么定理(工具)去证,然后再想办法把题目向这个工具靠拢。
  • 对于平面 F ( x , y , z ) = 0 F(x,y,z)=0 F(x,y,z)=0 z x ′ = − F x ′ F z ′ z'_x = -\frac{F'_x}{F'_z} zx=FzFx

微分中值定理

假设函数 f f f 在闭区间 [ a , b ] [a, b] [a,b] 连续且在开区间 ( a , b ) (a, b) (a,b) 可微,则存在一点 c , a < c < b c, a<c<b c,a<c<b, 使得
f ′ ( c ) = f ( b ) − f ( a ) b − a f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} f(c)=baf(b)f(a)
注意,这里的条件强调闭区间内连续,开区间内可导。

基本认知

  • 如果在某点可导,基本上条件算非常好了。
  • 达布定理其实就是导函数的介值定理。
  • f ( x ) = 1 x + □ f(x) = \frac{1}{x+\Box} f(x)=x+1,那么
    f n ( x ) = ( − 1 ) n n ! ( x + □ ) n + 1 f^n(x) = (-1)^n \frac{n!}{(x+\Box)^{n+1}} fn(x)=(1)n(x+)n+1n!
  • ( e λ x ) ( n ) = λ n e λ x (e^{\lambda x})^{(n)}=\lambda^ne^{\lambda x} (eλx)(n)=λneλx
  • 洛必达法则有时候颠倒一下分子分母做出来的结果是不一样的。

积分篇

积分技巧

  • 出现 ln ⁡ ( x ) \ln(x) ln(x),要么用分部积分,要么用 ln ⁡ ( x ) = u \ln(x)=u ln(x)=u整体替换,从而消掉它。
  • 不定积分主要是动手去试,不试是看不出什么端倪来的。
  • 配平分母时,如果分母含系数,分母最好化为首 1 的形式。
  • 凡遇有理多项式的求定积分的问题,即使在开根号中,首先反应的应该是配方。
  • 万能代换: t = tan ⁡ θ 2 t=\tan\frac{\theta}{2} t=tan2θ sin ⁡ θ = 2 t 1 + t 2 \sin \theta=\frac{2t}{1+t^2} sinθ=1+t22t cos ⁡ θ = 1 − t 2 1 + t 2 \cos \theta=\frac{1-t^2}{1+t^2} cosθ=1+t21t2 d θ = 2 1 + t 2 d t d \theta=\frac{2}{1+t^2}dt dθ=1+t22dt
  • 求积分,学会补项,学会用 1 的代换,分子有常数,最好把它拆出来。
  • 求积分,当为 ∫ ⋅ M \int \frac{\cdot}{\sqrt{M}} M 形式时,两条路。1、向 ∫ ⋅ 1 − x 2 \int \frac{\cdot}{\sqrt{1-x^2}} 1x2 靠拢。2、换元成 ∫ ⋅ t \int \frac{\cdot}{\sqrt{t}} t 或者 ∫ ⋅ t \int \frac{\cdot}{{t}} t的形式。
  • 遇到高次的三角函数,要懂得用半角公式将其降次,对于三角函数降次是最有效手段,换元法也是好手段。
  • 一眼看不出来的题目贵在尝试,不要光看不写。
  • ∫ d x x 2 + □ = ln ⁡ ∣ x + x 2 + □ ∣ + C \int \frac{dx}{\sqrt{x^2+\Box}}=\ln\left|x+\sqrt{x^2+\Box}\right |+C x2+ dx=lnx+x2+ +C
  • 求形如 ∫ x f ( x ) d x \int x f(x)dx xf(x)dx,不妨试一下分部积分。
  • 求积分时,能够化成多项相加减的,尽量化成多项,然后分别求积分。
  • 学会判断习题做法的单道性,然后不出轨地沿一条道走下去。
  • sin ⁡ α \sin \alpha sinα cos ⁡ α \cos \alpha cosα可以利用分布积分巧妙子转化。
  • 碰到被积函数的分母时有理多项式,更倾向于分子也含未知数。
  • 换元的时候要考虑怎么换,不要一味地去掉开根号符号,有时保留这个符号,只换开根号里面的东西,未尝不是一件好事。
  • 求定积分,就是要用逆向思维,把积分号里面的东西尽可能地变成我们所熟知的东西。这是凑微分法的精髓所在。
  • 积分里面喜减不喜乘,所以能化成减的尽量化成减,包括用 1 的代换。
  • 函数在闭区间上连续,那么可积。如果不连续,满足间断点有限个,或者单调,那么也是可积的。
  • 基本思想:分割->近似->求和->取极限。
  • ∫ ln ⁡ x 2 + y 2 d x \int \ln \sqrt{x^2+y^2}dx lnx2+y2 dx可用分部积分。
  • ∫ ln ⁡ x d e x = x ln ⁡ x − x + C \int \ln x dex = x\ln x -x + C lnxdex=xlnxx+C
  • 海伦公式计算面积: S = p ( p − a ) ( p − b ) ( p − c ) S=\sqrt{p(p-a)(p-b)(p-c)} S=p(pa)(pb)(pc) p = a + b + c 2 p = \frac{a+b+c}{2} p=2a+b+c
  • cos ⁡ ( n ⃗ , x ) d s = d y d z \cos(\vec n,x)ds=dydz cos(n ,x)ds=dydz
  • 二阶正交矩阵一定具有旋转矩阵的形式
  • 第二类积分不能使用积分区域进行替换
  • 积分的变量替换,椭圆的情况,令 x = a r cos ⁡ θ , y = b r sin ⁡ θ x=ar\cos \theta, y = br\sin \theta x=arcosθ,y=brsinθ,出来一个 a b r abr abr
  • 三重球积分,作 x = r sin ⁡ φ cos ⁡ θ , y = r sin ⁡ φ sin ⁡ θ , z = r cos ⁡ φ x=r\sin \varphi \cos \theta, y=r \sin \varphi \sin \theta, z=r\cos \varphi x=rsinφcosθ,y=rsinφsinθ,z=rcosφ
    出来一个 r 2 sin ⁡ φ r^2 \sin \varphi r2sinφ

常用积分表

处理原则

□ a 2 − x 2 ⟶ 令 x = a sin ⁡ t \frac{\Box}{\sqrt{a^2-x^2}}\stackrel{令x=a\sin t}{\longrightarrow} a2x2 x=asint
□ a 2 + x 2 ⟶ 令 x = a tan ⁡ t \frac{\Box}{\sqrt{a^2+x^2}}\stackrel{令x=a\tan t}{\longrightarrow} a2+x2 x=atant
□ x 2 − a 2 ⟶ 令 x = a cos ⁡ t \frac{\Box}{\sqrt{x^2-a^2}}\stackrel{令x=\frac{a}{\cos t}}{\longrightarrow} x2a2 x=costa

积分表

∫ 1 a 2 + x 2 d x = 1 a arctan ⁡ x a + C \int \frac{1}{a^{2}+x^{2}} \mathrm{d} x=\frac{1}{a} \arctan \frac{x}{a}+C a2+x21dx=a1arctanax+C

∫ 1 ( a 2 ± x 2 ) n d x = 1 2 a 2 ( n − 1 ) [ x ( a 2 ± x 2 ) n − 1 + ( 2 n − 3 ) ∫ 1 ( a 2 ± x 2 ) n − 1 d x ] , n ≠ 1 \begin{array}{l} \int \frac{1}{\left(a^{2} \pm x^{2}\right)^{n}} \mathrm{d} x=\frac{1}{2 a^{2}(n-1)}\left[\frac{x}{\left(a^{2} \pm x^{2}\right)^{n-1}}\right. \\ \left.+(2 n-3) \int \frac{1}{\left(a^{2} \pm x^{2}\right)^{n-1}} \mathrm{d} x\right], n \neq 1 \end{array} (a2±x2)n1dx=2a2(n1)1[(a2±x2)n1x+(2n3)(a2±x2)n11dx],n=1

∫ x 2 ± a 2 d x = 1 2 ( x x 2 ± a 2 ± a 2 ln ⁡ ∣ x + x 2 ± a 2 ∣ ) + C \int \sqrt{x^{2} \pm a^{2}} \mathrm{d} x=\frac{1}{2}\left(x \sqrt{x^{2} \pm a^{2}} \pm a^{2} \ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|\right)+C x2±a2 dx=21(xx2±a2 ±a2lnx+x2±a2 )+C

∫ 1 x 2 ± a 2 d x = ln ⁡ ∣ x + x 2 ± a 2 ∣ + C \int \frac{1}{\sqrt{x^{2} \pm a^{2}}} \mathrm{d} x=\ln \left|x+\sqrt{x^{2} \pm a^{2}}\right|+C x2±a2 1dx=lnx+x2±a2 +C

∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int \sec x d x=\ln |\sec x+\tan x|+C secxdx=lnsecx+tanx+C

∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \int \csc x d x=\ln |\csc x-\cot x|+C cscxdx=lncscxcotx+C

∫ 1 1 − x 2 d x = arcsin ⁡ x + C \int \frac{1}{\sqrt{1-x^{2} }} \mathrm{d} x=\arcsin x+C 1x2 1dx=arcsinx+C

∫ 1 1 − x 2 d x = 1 2 ln ⁡ ∣ 1 + x 1 − x ∣ + C \int \frac{1}{{1-x^{2} }} \mathrm{d} x=\frac{1}{2}\ln \left|\frac{1+x}{1-x}\right|+C 1x21dx=21ln1x1+x+C

∫ a 2 − x 2 d x = 1 2 ( x a 2 − x 2 + a 2 arcsin ⁡ x a ) + C \int \sqrt{a^{2}-x^{2} } \mathrm{d} x=\frac{1}{2}\left(x \sqrt{a^{2}-x^{2} } + a^{2} \arcsin \frac{x}{a}\right)+C a2x2 dx=21(xa2x2 +a2arcsinax)+C

格林公式和高斯公式

格林公式

设闭区域 D D D 由分段光滑的曲线 L L L 困成,函数 P ( x , y ) P(x, y) P(x,y) Q ( x , y ) Q(x, y) Q(x,y) D D D 上具有一阶连续偏导数,则有
∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∮ L P d x + Q d y \iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d x d y=\oint_{L} P d x+Q d y D(xQyP)dxdy=LPdx+Qdy
其中 L L L D D D 的取正向的边界曲线。

高斯公式

设空间有界闭合区域 Ω \Omega Ω,其边界 ∂ Ω \partial \Omega Ω 为分片光滑闭曲面。函数 P ( x , y , z ) , Q ( x , y , z ) , R ( x , y , z ) P(x, y, z), Q(x, y, z), R(x, y, z) P(x,y,z),Q(x,y,z),R(x,y,z) 及其一阶偏导数在 Ω \Omega Ω上连续,那么:
∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d V = ∬ ∂ Ω P d y d z + Q d z d x + R d x d y \iiint_{\Omega}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right) \mathrm{d} V=\iint_{\partial \Omega} P \mathrm{d} y d z+Q \mathrm{d} z d x+R \mathrm{d} x \mathrm{d} y Ω(xP+yQ+zR)dV=ΩPdydz+Qdzdx+Rdxdy

积分等式

∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x \int_0^\pi x f(\sin x)dx=\frac{\pi}{2}\int_0^\pi f(\sin x)dx 0πxf(sinx)dx=2π0πf(sinx)dx
∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int_a^b f(x)dx=\int_a^b f(a+b-x)dx abf(x)dx=abf(a+bx)dx
∫ − a a f ( x ) d x = ∫ 0 a f ( x ) + f ( − x ) d x \int_{-a}^a f(x)dx=\int_0^a f(x)+f(-x)dx aaf(x)dx=0af(x)+f(x)dx
x b − x a ln ⁡ x = ∫ a b x y d y \frac{x^b-x^a}{\ln x}=\int_a^b x^y dy lnxxbxa=abxydy

积分中值定理

积分第一中值定理

f : [ a , b ] → R f:[a, b] \rightarrow \mathbb{R} f:[a,b]R 为一连续函数 , g : [ a , b ] → R , g:[a, b] \rightarrow \mathbb{R} ,g:[a,b]R 要求 g ( x ) g(x) g(x) 是可积函数目在积分区间不变号,那么存在一点 ξ ∈ [ a , b ] \xi \in[a, b] ξ[a,b] 使得
∫ a b f ( x ) g ( x ) d x = f ( ξ ) ∫ a b g ( x ) d x \int_{a}^{b} f(x) g(x) d x=f(\xi) \int_{a}^{b} g(x) d x abf(x)g(x)dx=f(ξ)abg(x)dx

积分第二中值定理

f , g f,g f,g [ a , b ] [a,b] [a,b]上黎曼可积且 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上单调,则存在 [ a , b ] [a,b] [a,b]上的点使
∫ a b f ( x ) g ( x ) d x = f ( a ) ∫ a ξ g ( x ) d x + f ( b ) ∫ ξ b g ( x ) d x \int_{a}^{b} f(x) g(x) d x=f(a) \int_{a}^{\xi} g(x) d x+f(b) \int_{\xi}^{b} g(x) d x abf(x)g(x)dx=f(a)aξg(x)dx+f(b)ξbg(x)dx

广义积分柯西判别法

无穷限积分

f ( x ) ≤ c x p f(x)\leq \frac{c}{x^p} f(x)xpc,且 p > 1 p>1 p>1,则 ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty}|f(x)|dx a+f(x)dx收敛。
f ( x ) ≥ c x p f(x)\geq \frac{c}{x^p} f(x)xpc,且 p ≤ 1 p\leq1 p1,则 ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty}|f(x)|dx a+f(x)dx发散。
极限形式:
若有 p > 1 p>1 p>1,是 lim ⁡ x → + ∞ x p ∣ f ( x ) ∣ = l \lim\limits_{x \to +\infty}x^p|f(x)|=l x+limxpf(x)=l,且 0 ≤ l < + ∞ 0\leq l < +\infty 0l<+,则 ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty}|f(x)|dx a+f(x)dx收敛。
若有 p < 1 p<1 p<1,是 lim ⁡ x → + ∞ x p ∣ f ( x ) ∣ = l \lim\limits_{x \to +\infty}x^p|f(x)|=l x+limxpf(x)=l,且 0 < l ≤ + ∞ 0< l \leq +\infty 0<l+,则 ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty}|f(x)|dx a+f(x)dx发散。

瑕积分

若有 p < 1 p<1 p<1,使得 ∣ f ( x ) ∣ ≤ c ( x − a ) p |f(x)|\leq \frac{c}{(x-a)^p} f(x)(xa)pc,则 ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty}|f(x)|dx a+f(x)dx收敛。
若有 p ≥ 1 p\geq1 p1,使得 ∣ f ( x ) ∣ ≥ c ( x − a ) p |f(x)|\geq \frac{c}{(x-a)^p} f(x)(xa)pc,则 ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty}|f(x)|dx a+f(x)dx发散。

极限形式:
若有 p < 1 p<1 p<1,是 lim ⁡ x → a ( x − a ) p ∣ f ( x ) ∣ = k \lim\limits_{x \to a}(x-a)^p|f(x)|=k xalim(xa)pf(x)=k,且 0 ≤ k < + ∞ 0 \leq k < +\infty 0k<+,则 ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty}|f(x)|dx a+f(x)dx收敛。
若有 p ≥ 1 p\geq 1 p1,是 lim ⁡ x → a ( x − a ) p ∣ f ( x ) ∣ = k \lim\limits_{x \to a}(x-a)^p|f(x)|=k xalim(xa)pf(x)=k,且 0 < k ≤ + ∞ 0 < k \leq +\infty 0<k+,则 ∫ a + ∞ ∣ f ( x ) ∣ d x \int_a^{+\infty}|f(x)|dx a+f(x)dx发散。

极限和连续篇

极限技巧

  • 当求极限时,若只涉及乘除,极限存在的情况下,极限符号可以直接穿。
  • x k O ( x m ) = O ( x k + m ) x^k O(x^m)=O(x^{k+m}) xkO(xm)=O(xk+m)
  • 欲消除 sin ⁡ ( x ) \sin(x) sin(x),可以用等价无穷小,也可以用重要极限。
  • 证明题,一般喜欢吧存在性的 ξ \xi ξ移到一边。
  • 一切证明,回归定义。
  • 三个小题的题目,尽量通过观察,找出前两个小题的关系,然后利用前一小题,解决后一小题。
  • 巧用切化弦公式。
  • ( 1 + ⋅ n ) n → e ⋅ (1+\frac{\cdot}{n})^n\rightarrow e^{\cdot} (1+n)ne
  • 用泰勒公式求极限,更青睐于减的形式。以及 ⋅ x n \frac{\cdot}{x^n} xn的形式(n大,x趋无穷或者n小,x趋于0)。
  • 用洛必达法则做题一定要谨慎又谨慎。
  • 一眼做不出来的证明,能用反正法的,尽量用反证法。
  • 计算:尽量吧分数和负号往前提出来,变成整数的加减法。
  • 行百里者半九十,越后面越小心。
  • 数列极限等于平均数的极限。
  • 求极限的技巧,不等关系和分母有理化。

基本认知

  • 柯西列和收敛,函数(数列)某点的一致连续。
  • 有界数列,单调就收敛,存在一个子列收敛。
  • 连续函数在有界闭区间上一致连续,有界开区间端点左右极限存在,连续等价于一致连续。
  • 有界就有最:有界闭区间,最值存在。
  • 闭区间套长度趋于“0”,必有一点被他们所有的套套套住。
  • 闭区间的无限开覆盖,存在有限子覆盖。
  • 形式相同的无穷大相减,其实为0。如 x → 0 x\rightarrow 0 x0 ln ⁡ tan ⁡ x − ln ⁡ x → 0 \ln \tan x- \ln x \rightarrow 0 lntanxlnx0
  • 被积函数连续,函数未必连续。

二阶曲面方程

平面方程:
A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0

球面方程:
( x − x 0 ) 2 + ( y − y 0 ) 2 + ( z − z 0 ) 2 = R 2 \left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=R^{2} (xx0)2+(yy0)2+(zz0)2=R2

柱面方程:
x 2 + y 2 = R 2 ( 圆 柱 面 ) x^{2}+y^{2}=R^{2} (圆柱面) x2+y2=R2
y 2 = 2 x ( 抛 物 柱 面 ) y^{2}=2 x (抛物柱面 ) y2=2x
x 2 a 2 + y 2 b 2 = 1 ( 椭 圆 柱 面 ) \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(椭圆柱面) a2x2+b2y2=1

除此之外,还有锥面方程、旋转曲面方程等等。这是几何的重点,而不是分析的重点,不再细述。

函数篇

泰勒展开

定义

无穷可微函数 f ( x ) f(x) f(x)的泰勒级数:
∑ n = 0 ∞ f ( n ) ( a ) n ! ( x − a ) n \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n !}(x-a)^{n} n=0n!f(n)(a)(xa)n
这里, n ! n ! n! 表示 n n n 的阶乘 , , , f ( n ) ( a ) f^{(n)}(a) f(n)(a) 表示函数 f f f 在点 a a a 处的 n n n 阶导数。如果 a = 0 , a=0, a=0, 也可以把这个级数称为麦克劳林级数。

泰勒公式有皮亚诺、拉格朗日、柯西、积分等各种余项形式。

泰勒展开表示的是函数基于某个点处的一个表达。

常见函数泰勒级数

∀ x ∈ C , e x = ∑ n = 0 + ∞ x n n ! \forall x \in \mathbb{C}, e^{x}=\sum_{n=0}^{+\infty} \frac{x^{n}}{n !} xC,ex=n=0+n!xn
∀ x ∈ R , sin ⁡ x = ∑ n = 0 + ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! \forall x \in \mathbb{R}, \sin x=\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1) !} xR,sinx=n=0+(1)n(2n+1)!x2n+1
∀ x ∈ R , cos ⁡ x = ∑ n = 0 + ∞ ( − 1 ) n x 2 n ( 2 n ) ! \forall x \in \mathbb{R}, \cos x=\sum_{n=0}^{+\infty}(-1)^{n} \frac{x^{2 n}}{(2 n) !} xR,cosx=n=0+(1)n(2n)!x2n
∀ x ∈ ( − 1 , 1 ] , ln ⁡ ( x + 1 ) = ∑ n = 1 + ∞ ( − 1 ) n + 1 x n n \forall x \in(-1,1], \ln (x+1)=\sum_{n=1}^{+\infty}(-1)^{n+1} \frac{x^{n}}{n} x(1,1],ln(x+1)=n=1+(1)n+1nxn
∀ x ∈ R , ∀ α ∈ N , ( 1 + x ) α = 1 + ∑ n = 1 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n = ∑ n = 0 ∞ ( α n ) x n \forall x \in \mathbb{R}, \forall \alpha \in \mathbb{N},(1+x)^{\alpha}=1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n !} x^{n}=\sum_{n=0}^{\infty}\left(\begin{array}{l} \alpha \\ n \end{array}\right) x^{n} xR,αN,(1+x)α=1+n=1n!α(α1)(αn+1)xn=n=0(αn)xn

一些重要的特定函数

符号函数

符号函数 ( Sign function,简称sgn ) 是一个逻辑函数,用以判断实数的正负号。为避免和英文读音相似的正弦函数(sine ) 混潜,它亦称为Signum function。其定义为:
sgn ⁡ x = { − 1 : x < 0 0 : x = 0 1 : x > 0 \operatorname{sgn} x=\left\{\begin{array}{ccc} -1 & : & x<0 \\ 0 & : & x=0 \\ 1 & : & x>0 \end{array}\right. sgnx=101:::x<0x=0x>0
任何实数都可以表示为其绝对值和符号函数的积 :
x = ( sgn ⁡ x ) ∣ x ∣ x=(\operatorname{sgn} x)|x| x=(sgnx)x

黎曼函数

定义于[0,1]上,
R ( x ) = { 1 q , x = p q ,  其中  p , q ∈ N + 且互质, 0 , x = 0 , 1  或 ( 0 , 1 ) 内的无理数 R(x)=\left\{\begin{array}{ll}\frac{1}{q}, & x=\frac{p}{q}, \text { 其中 } p, q \in \mathbb N_+\text {且互质,} \\ 0, & x = 0,1 \text { 或} (0,1) \text{内的无理数}\end{array}\right. R(x)={q1,0,x=qp, 其中 p,qN+且互质,x=0,1 (0,1)内的无理数
闭区间内可积,积分为0,无原函数,任意点的极限都等于0。
这是一个几乎接近于零的可积函数。

狄利克雷函数

定义狄利克雷函数
D ( x ) = { 1 , x  是有理数,  0 , x  是无理数,  D(x)=\left\{\begin{array}{ll}1, & x \text { 是有理数, } \\ 0, & x \text { 是无理数, }\end{array}\right. D(x)={1,0,x 是有理数x 是无理数
黎曼不可积函数,但是勒贝格可积。

分段三角函数

f ( x ) = { x 2 sin ⁡ 1 x , x ≠ 0 0 , x = 0 f(x)=\left\{\begin{array}{ll} x^2\sin\frac{1}{x}, & x \neq 0 \\ 0, & x =0 \end{array}\right. f(x)={x2sinx1,0,x=0x=0
在这里插入图片描述

在0点处不解析。
原函数可导,但是导函数不一定连续,但一定满足达布定理,也就是说比较连续。
导数不连续,零点不孤立,0为零点们的一个聚点。
提示:分段函数的导数值在分段点处应该用定义来求。

分段指数函数

f ( x ) = { e − 1 x 2 , x ≠ 0 0 , x = 0 f(x)=\left\{\begin{array}{ll} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x =0 \end{array}\right. f(x)={ex21,0,x=0x=0
在这里插入图片描述

x = 0 x=0 x=0处有任意阶导数,但不一定能展开为泰勒级数。
秒趋无穷。

其他函数

双曲函数

双曲正弦: sinh ⁡ x = e x − e − x 2 \sinh x=\frac{e^{x}-e^{-x}}{2} sinhx=2exex
双曲余弦: cosh ⁡ x = e x + e − x 2 \cosh x=\frac{e^{x}+e^{-x}}{2} coshx=2ex+ex

二元函数

f ( x , y ) = { x − y x + y , x + y ≠ 0 0 , x + y = 0 f(x,y)=\left\{\begin{array}{ll} \frac{x-y}{x+y}, & x+y \neq 0 \\ 0, & x+y =0 \end{array}\right. f(x,y)={x+yxy,0,x+y=0x+y=0
二次极限存在不相等。

Γ \Gamma Γ β \beta β函数

B ( p , q ) = ∫ 0 1 x p − 1 ( 1 − x ) q − 1 d x = Γ ( p ) + Γ ( q ) Γ ( p + q ) B(p,q)=\int_0^1 x^{p-1}(1-x)^{q-1}dx=\frac{\Gamma(p)+\Gamma(q)}{\Gamma(p+q)} B(p,q)=01xp1(1x)q1dx=Γ(p+q)Γ(p)+Γ(q)
Γ ( s ) = ∫ 0 + ∞ x ( s − 1 ) e − x d x \Gamma(s) = \int_0^{+\infty} x^{(s-1)}e^{-x}dx Γ(s)=0+x(s1)exdx
Γ ( n + 1 ) = n ! f \Gamma(n+1) = n!f Γ(n+1)=n!f

常用等价无穷小

一般

x → 0 x \rightarrow 0 x0 时,

  • sin ⁡ x ∼ x \sin x \sim x sinxx
  • tan ⁡ x ∼ x \tan x \sim x tanxx
  • arcsin ⁡ x ∼ x \arcsin x \sim x arcsinxx
  • arctan ⁡ x ∼ x \arctan x \sim x arctanxx
  • e x − 1 ∼ x e^{x}-1 \sim x ex1x
  • ln ⁡ ( x + 1 ) ∼ x \ln (x+1) \sim x ln(x+1)x
  • ( 1 + x ) α − 1 ∼ α x (1+x)^{\alpha}-1 \sim \alpha x (1+x)α1αx
  • 1 − cos ⁡ x ∼ 1 2 x 2 1-\cos x \sim \frac{1}{2} x^{2} 1cosx21x2
  • a x − 1 ∼ x ln ⁡ a ( a > 0 , a ≠ 1 ) a^{x}-1 \sim x \ln a (a>0, a \neq 1) ax1xlna(a>0,a=1)
  • log ⁡ a ( 1 + x ) ∼ x ln ⁡ a ( a > 0 , a ≠ 1 ) \log _{a}(1+x) \sim \frac{x}{\ln a}(a>0, a \neq 1) loga(1+x)lnax(a>0,a=1)
  • ( 1 + β x ) α − 1 ∼ α β x (1+\beta x)^{\alpha}-1 \sim \alpha \beta x (1+βx)α1αβx

stirling 公式

n ! ∼ 2 π n ( n e ) n n ! \sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} n!2πn (en)n
ln ⁡ n ! ∼ n ln ⁡ n \ln n!\sim n\ln n lnn!nlnn

一些共识

  • 0 的负指数次方不等于 0。
  • sin ⁡ \sin sin函数半个周期的面积为2。
  • 指数函数的敛散速率大于幂函数
  • 念法:正弦余割,余弦正割。 cot ⁡ x = 1 tan ⁡ x \cot x=\frac{1}{\tan x} cotx=tanx1:余切。 csc ⁡ x = 1 sin ⁡ x \csc x =\frac{1}{\sin x} cscx=sinx1:余割。 sec ⁡ x = 1 cos ⁡ x \sec x =\frac{1}{\cos x} secx=cosx1:正割。
  • 下凸函数, f ( E ( x ) ) ≤ E ( f ( x ) ) f(E(x))\leq E(f(x)) f(E(x))E(f(x)),詹森不等式。
  • 证明不等式时,可以将不等式进行变换后再证。

不等式和等式篇

不等式

Young 不等式

在数学上,杨氏不等式,指出:假设 a , b , p > 1 a,b, p>1 a,b,p>1 q > 1 q>1 q>1 是正实数 ,且有 1 / p + 1 / q = 1 1/p+1 / q=1 1/p+1/q=1, 那么:
a b ≤ a p p + b q q a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q} abpap+qbq
等号成立当且仅当 a p = b q a^{p}=b^{q} ap=bq。特别地,如果我们取 p = q = 2 p=q=2 p=q=2,那么,
a b ≤ a 2 2 + b 2 2 ab\leq\frac{a^2}{2}+\frac{b^2}{2} ab2a2+2b2
这时,也叫柯西不等式。

无名不等式

1 ≤ p < + ∞ 1 \leq p< +\infty 1p<+。 对任意的 m ∈ N , a j ⩾ 0 , j = 1 , 2 , ⋯   , m , m \in \mathbb{N}, a_{j} \geqslant 0, j=1,2, \cdots, m, mN,aj0,j=1,2,,m, 成立
( a 1 + a 2 + ⋯ + a m ) p ⩽ m p − 1 ( a 1 p + a 2 p + ⋯ + a m p ) \left(a_{1}+a_{2}+\cdots+a_{m}\right)^{p} \leqslant m^{p-1}\left(a_{1}^{p}+a_{2}^{p}+\cdots+a_{m}^{p}\right) (a1+a2++am)pmp1(a1p+a2p++amp)
特殊地,取 m = 2 m=2 m=2时,我们有,
( a + b ) p ⩽ 2 p − 1 ( a p + b p ) , ∀ a , b ⩾ 0 (a+b)^{p} \leqslant 2^{p-1}\left(a^{p}+b^{p}\right), \quad \forall a, b \geqslant 0 (a+b)p2p1(ap+bp),a,b0
更特殊地,我们可以取 p = 2 p=2 p=2
( a + b ) 2 ⩽ 2 ( a 2 + b 2 ) , ∀ a , b ⩾ 0 (a+b)^{2} \leqslant 2\left(a^{2}+b^{2}\right), \quad \forall a, b \geqslant 0 (a+b)22(a2+b2),a,b0

均值不等式

如果 x 1 , x 2 , … , x n x_{1}, x_{2}, \ldots, x_{n} x1,x2,,xn 是正数,定义调和平均,几何平均,算术平均和平方平均。
H n = n ∑ i = 1 n 1 x i = n 1 x 1 + 1 x 2 + ⋯ + 1 x n H_{n}=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}=\frac{n}{\frac{1}{x_{1}}+\frac{1}{x_{2}}+\cdots+\frac{1}{x_{n}}} Hn=i=1nxi1n=x11+x21++xn1n
G n = ∏ i = 1 n x i n = x 1 x 2 ⋯ x n n G_{n}=\sqrt[n]{\prod_{i=1}^{n} x_{i}}=\sqrt[n]{x_{1} x_{2} \cdots x_{n}} Gn=ni=1nxi =nx1x2xn
A n = ∑ i = 1 n x i n = x 1 + x 2 + ⋯ + x n n A_{n}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n} An=ni=1nxi=nx1+x2++xn
Q n = ∑ i = 1 n x i 2 n = x 1 2 + x 2 2 + ⋯ + x n 2 n Q_{n}=\sqrt{\frac{\sum_{i=1}^{n} x_{i}^{2}}{n}}=\sqrt{\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}{n}} Qn=ni=1nxi2 =nx12+x22++xn2
那么,
H n ≤ G n ≤ A n ≤ Q n H_{n} \leq G_{n} \leq A_{n} \leq Q_{n} HnGnAnQn
当且仅当 x 1 = x 2 = ⋯ = x n , x_{1}=x_{2}=\cdots=x_{n}, x1=x2==xn, 等号成立。
简记为: “调几算方”。
最后一个不等式,也就是我们前面提到的无名不等式。

Holder 不等式

1 ≤ p , q ≤ ∞ 1 \leq p, q \leq \infty 1p,q 1 p + 1 q = 1 \frac{1}{p}+\frac{1}{q}=1 p1+q1=1 x i , y i x_i,y_i xiyi是实数,
∑ k = 1 n ∣ x k y k ∣ ≤ ( ∑ k = 1 n ∣ x k ∣ p ) 1 / p ( ∑ k = 1 n ∣ y k ∣ q ) 1 / q \sum_{k=1}^{n}\left|x_{k} y_{k}\right| \leq\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p}\left(\sum_{k=1}^{n}\left|y_{k}\right|^{q}\right)^{1 / q} k=1nxkyk(k=1nxkp)1/p(k=1nykq)1/q
它的积分形式是,
∥ f g ∥ 1 ≤ ∥ f ∥ p ∥ g ∥ q \|f g\|_{1} \leq\|f\|_{p}\|g\|_{q} fg1fpgq
p = q = 2 p = q = 2 p=q=2,便得到柯西-施瓦茨(Schwarz)不等式。
( ∑ i = 1 n x i y i ) 2 ≤ ( ∑ i = 1 n x i 2 ) ( ∑ i = 1 n y i 2 ) \left(\sum_{i=1}^{n} x_{i} y_{i}\right)^{2} \leq\left(\sum_{i=1}^{n} x_{i}^{2}\right)\left(\sum_{i=1}^{n} y_{i}^{2}\right) (i=1nxiyi)2(i=1nxi2)(i=1nyi2)

闵可夫斯基(Minkowski)不等式

1 ≤ p ≤ ∞ 1 \leq p \leq \infty 1p,
( ∑ k = 1 n ∣ x k + y k ∣ p ) 1 p ≤ ( ∑ k = 1 n ∣ x k ∣ p ) 1 p + ( ∑ k = 1 n ∣ y k ∣ p ) 1 p \left(\sum_{k=1}^{n}\left|x_{k}+y_{k}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=1}^{n}\left|y_{k}\right|^{p}\right)^{\frac{1}{p}} (k=1nxk+ykp)p1(k=1nxkp)p1+(k=1nykp)p1
如果 x 1 , ⋯   , x n , y 1 , ⋯   , y n > 0 , p < 1 , x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n}>0, p<1, x1,,xn,y1,,yn>0,p<1, ≤ \leq 可以变为 ≥ \geq

它写成积分形式就是,
∥ f + g ∥ p ≤ ∥ f ∥ p + ∥ g ∥ p \|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p} f+gpfp+gp
如果 1 < p < ∞ , 1<p<\infty, 1<p<, 等号成立当且仅当 ∃ k ≥ 0 , f = k g \exists k \geq 0, f=k g k0,f=kg 或者 g = k f g=k f g=kf

若尔当不等式

2 π x ⩽ sin ⁡ x ⩽ x ( 0 ⩽ x ⩽ π 2 ) \frac{2}{\pi} x \leqslant \sin x \leqslant x \quad\left(0 \leqslant x \leqslant \frac{\pi}{2}\right) π2xsinxx(0x2π)

伯努利不等式

对实数 x > − 1 x>-1 x>1
{ ( 1 + x ) n ≥ 1 + n x , n ≥ 1 ( 1 + x ) n ≤ 1 + n x , 0 ≤ n ≤ 1 \left\{\begin{array}{ll}(1+x)^{n} \geq 1+n x, & n \geq 1\\ (1+x)^{n} \leq 1+n x, &0 \leq n \leq 1\end{array}\right. {(1+x)n1+nx,(1+x)n1+nx,n10n1
等号成立当且仅当n = 0,1,或x = 0吋。

三角不等式

∣ a ∣ − ∣ b ∣ ≤ ∣ a − b ∣ ≤ ∣ a ∣ + ∣ b ∣ |a|-|b|\leq |a-b|\leq|a|+|b| ababa+b

对数不等式

当 x>-1 时,
x 1 + x ≤ ln ⁡ ( 1 + x ) ≤ x \frac{x}{1+x}\leq \ln(1+x)\leq x 1+xxln(1+x)x
x = 1 / n x=1/n x=1/n
1 n + 1 < ln ⁡ ( 1 + 1 n ) < 1 n \frac{1}{n+1}<\ln(1+\frac{1}{n})<\frac{1}{n} n+11<ln(1+n1)<n1

杂牌不等式

n s > > ln ⁡ k n s , k > 0 n^s > > \ln ^k n \quad s,k>0 ns>>lnkns,k>0

等式

平方和与立方和

1 2 + 2 2 + . . . + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 1^2+2^2+...+n^2=\frac{n(n+1)(2n+1)}{6} 12+22+...+n2=6n(n+1)(2n+1)
1 2 + 3 2 + . . . + ( 2 n − 1 ) 2 = n ( 4 n 2 − 1 ) 3 1^2+3^2+...+(2n-1)^2=\frac{n(4n^2-1)}{3} 12+32+...+(2n1)2=3n(4n21)
2 2 + 4 2 + . . . + 2 n 2 = 2 n ( n + 1 ) ( 2 n + 1 ) 3 2^2+4^2+...+2n^2=\frac{2n(n+1)(2n+1)}{3} 22+42+...+2n2=32n(n+1)(2n+1)
1 3 + 2 3 + . . . + n 3 = n ( n + 1 ) 2 4 1^3+2^3+...+n^3=\frac{n(n+1)^2}{4} 13+23+...+n3=4n(n+1)2

二项式公式和n方差公式

二项式公式:

( a + b ) n = a n + C n 1 a n − 1 b 1 + ⋯ + C n k a n − k b k + ⋯ + b n (a+b)^{n}=a^{n}+C_{n}^{1} a^{n-1} b^{1}+\cdots+{C}_n^{k}a^{n-k} b^{k}+\cdots+b^{n} (a+b)n=an+Cn1an1b1++Cnkankbk++bn

n方差公式:

a n − b n = ( a − b ) ( a n − 1 + a n − 2 b 1 + ⋯ + a b n − 2 + b n − 1 ) a^{n}-b^{n}=\left(a-b\right)\left(a^{n-1}+a^{n-2} b^{1}+\cdots+a b^{n-2}+b^{n-1}\right) anbn=(ab)(an1+an2b1++abn2+bn1)

a − b = ( a 1 / n − b 1 / n ) ( a ( n − 1 ) / n + a ( n − 2 ) / n b 1 / n + ⋯ + a 1 / n b ( n − 2 ) / n + b ( n − 1 ) / n ) a^{}-b^{}=\left(a^{1/n}-b^{1/n}\right)\left(a^{(n-1)/n}+a^{(n-2)/n} b^{1/n}+\cdots+a^{1/n} b^{(n-2)/n}+b^{(n-1)/n}\right) ab=(a1/nb1/n)(a(n1)/n+a(n2)/nb1/n++a1/nb(n2)/n+b(n1)/n)

基本三角公式

积化和差

2 sin ⁡ x cos ⁡ y = sin ⁡ ( x + y ) + sin ⁡ ( x − y ) 2 cos ⁡ x sin ⁡ y = sin ⁡ ( x + y ) − sin ⁡ ( x − y ) 2 sin ⁡ x sin ⁡ y − cos ⁡ ( x − y ) − cos ⁡ ( x + y ) 2 cos ⁡ x cos ⁡ y = cos ⁡ ( x + y ) + cos ⁡ ( x − y ) \begin{array}{l} 2 \sin x \cos y=\sin (x+y)+\sin (x-y) \\ 2 \cos x \sin y=\sin (x+y)-\sin (x-y) \\ 2 \sin x \sin y-\cos (x-y)-\cos (x+y) \\ 2 \cos x \cos y=\cos (x+y)+\cos (x-y) \end{array} 2sinxcosy=sin(x+y)+sin(xy)2cosxsiny=sin(x+y)sin(xy)2sinxsinycos(xy)cos(x+y)2cosxcosy=cos(x+y)+cos(xy)

和差化积

sin ⁡ x + sin ⁡ y = 2 sin ⁡ x + y 2 cos ⁡ x − y 2 sin ⁡ x − sin ⁡ y = 2 cos ⁡ x + y 2 sin ⁡ x − y 2 cos ⁡ x + cos ⁡ y = 2 cos ⁡ x + y 2 cos ⁡ x − y 2 cos ⁡ x − cos ⁡ y = 2 sin ⁡ y − x 2 sin ⁡ x + y 2 \begin{array}{l} \sin x+\sin y=2 \sin \frac{x+y}{2} \cos \frac{x-y}{2} \\ \sin x-\sin y=2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}\\ \cos x+\cos y=2 \cos \frac{x+y}{2} \cos \frac{x-y}{2} \\ \cos x-\cos y=2 \sin \frac{y-x}{2} \sin \frac{x+y}{2} \end{array} sinx+siny=2sin2x+ycos2xysinxsiny=2cos2x+ysin2xycosx+cosy=2cos2x+ycos2xycosxcosy=2sin2yxsin2x+y

三倍角公式

3元-4元3角=挣钱:
sin ⁡ 3 α = 3 sin ⁡ α − 4 sin ⁡ 3 α \sin3\alpha=3\sin\alpha-4\sin^3\alpha sin3α=3sinα4sin3α
4元3角-3元=余钱:
cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α \cos3\alpha=4\cos^3\alpha-3\cos\alpha cos3α=4cos3α3cosα
两个相除:
tan ⁡ 3 α = 3 tan ⁡ α − tan ⁡ 3 α 1 − 3 tan ⁡ 2 α \tan3\alpha=\frac{3\tan\alpha-\tan^3\alpha}{1-3\tan^2\alpha} tan3α=13tan2α3tanαtan3α

倍角关系(半角和二倍角)

cos ⁡ 2 x = 1 1 + tan ⁡ 2 x \cos^2x = \frac{1}{1+\tan^2x} cos2x=1+tan2x1
1 + cos ⁡ x = 2 cos ⁡ 2 ( x 2 ) 1+\cos x=2\cos^2(\frac{x}{2}) 1+cosx=2cos2(2x)
1 − cos ⁡ x = 2 sin ⁡ 2 ( x 2 ) 1-\cos x=2\sin^2(\frac{x}{2}) 1cosx=2sin2(2x)

tan ⁡ α 2 = ± 1 − cos ⁡ α 1 + cos ⁡ α tan ⁡ θ 2 = 1 − cos ⁡ θ sin ⁡ θ = sin ⁡ θ 1 + cos ⁡ θ \begin{array}{l} \tan \frac{\alpha}{2}=\pm \sqrt{\frac{1-\cos \alpha}{1+\cos \alpha}} \\ \tan \frac{\theta}{2}=\frac{1-\cos \theta}{\sin \theta}=\frac{\sin \theta}{1+\cos \theta} \end{array} tan2α=±1+cosα1cosα tan2θ=sinθ1cosθ=1+cosθsinθ

π \pi π相关积分

辛格函数
∫ 0 + ∞ sin ⁡ x x d x = π 2 \int _0^{+\infty} \frac{\sin x}{x}dx = \frac{\pi}{2} 0+xsinxdx=2π
概率积分
∫ 0 + ∞ e − x 2 d x = π 2 \int _0^{+\infty}e^{-x^2}dx = \frac{\sqrt{\pi}}{2} 0+ex2dx=2π
Γ \Gamma Γ函数
Γ [ 1 / 2 ] = π \Gamma[1/2]=\sqrt{\pi} Γ[1/2]=π

杂牌等式

ln ⁡ ( 1 + h ) = h 1 + θ h , 0 < θ < 1 \ln(1+h)=\frac{h}{1+\theta h},0<\theta<1 ln(1+h)=1+θhh,0<θ<1
∫ 0 + ∞ x n e − x d x = n ! \int _0^{+\infty}x^ne^{-x}dx = n! 0+xnexdx=n!
∫ 0 + ∞ e − x d x = 1 \int _0^{+\infty}e^{-x}dx = 1 0+exdx=1
x > 0 arctan ⁡ x + arctan ⁡ 1 x = π 2 x>0 \quad \arctan x+\arctan\frac{1}{x}=\frac{\pi}{2} x>0arctanx+arctanx1=2π

©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页