关于两个周期函数的和的周期性的讨论

关于两个周期函数的和的周期性的讨论

因为排版和敲数学公式的局限性,很多地方写得并不是非常严格,或者有些跳跃,望海涵。

初衷

想这个问题的初衷是在给同学们习题课的时候(华东师大版的数学分析),里面有一道题,如下:
求下列函数的周期: cos ⁡ x 2 + 2 sin ⁡ x 3 \cos \frac{x}{2}+2 \sin \frac{x}{3} cos2x+2sin3x
这道题本身比较简单,显然 12 π 12\pi 12π 是它的一个周期,如果这里的周期理解为基本周期(最小正周期)的话(有同学发问了),我们还得 check 6 π 6\pi 6π 不是它的一个周期,这也是很容易的,找两个点算一算即可。

那么,作为数学分析课程的学习,我们就不应该满足于此,应该考虑更多一些些?

简单地问,两个周期函数的和是否是周期函数?若是,周期是多少?最小正周期又是多少?

准备工作

定义(可公度):
对于实数 T 1 , T 2 T_1,T_2 T1,T2,若存在 m , n ∈ N , \mathrm{m}_{\mathrm{,}} \mathrm{n} \in \mathrm{N}, m,nN, 使 T 1 / T 2 = m / n \mathrm{T}_{1} / \mathrm{T}_{2}=\mathrm{m} / \mathrm{n} T1/T2=m/n,则称 T 1 , T 2 T_1,T_2 T1,T2 可公度,否则称为不可公度。

引理
T 1 , T 2 T_1, T_2 T1,T2 是两个不可公度的正数,则存在数偶序列 ( m k , n k ) , k = 1 , 2 , 3 , ⋯   , \left(m_{k}, n_{k}\right), k=1,2,3, \cdots, (mk,nk),k=1,2,3,, 使得
lim ⁡ k → ∞ ( m k T 1 + n k T 2 ) = 0 \lim _{k \rightarrow \infty}\left(m_{k} T_1+n_{k} T_2\right)=0 klim(mkT1+nkT2)=0
其中 m k , n k m_{k}, n_{k} mk,nk 都是整数.

证明:
T 1 = T 2 T_1=T_2 T1=T2的时候显然,下面不妨假设 a 0 : = T 1 > T 2 : = a 1 a_0:=T_1>T_2:=a_1 a0:=T1>T2:=a1
我们可以用辗转相除法构造一个数列 a k a_k ak
a 0 = i 1 a 1 + a 2 a_{0}=i_{1} a_{1}+a_{2} a0=i1a1+a2
a 1 = i 2 a 2 + a 3 a_{1}=i_{2} a_{2}+a_{3} a1=i2a2+a3
… … ……
以此类推。易知,这里的 a k → 0 a_k\rightarrow 0 ak0,并且它可以递推地写成:
a k = m k a 0 + n k a 1 a_k = m_ka_0+n_ka_1 ak=mka0+nka1
的形式。譬如,
a 2 = a 0 − i 1 a 1 = − i 1 a + b = m 1 a + n 1 b a_{2}=a_{0}-i_{1} a_{1}=-i_{1} a+b=m_{1} a+n_{1} b a2=a0i1a1=i1a+b=m1a+n1b
a 3 = a 1 − i 2 a 2 = ( 1 − i 2 m 1 ) a − i 2 n 1 b = m 2 a + n 2 b a_{3}=a_{1}-i_{2} a_{2}=\left(1-i_{2} m_{1}\right) a-i_{2} n_{1} b=m_{2} a+n_{2} b a3=a1i2a2=(1i2m1)ai2n1b=m2a+n2b
… … ……

证毕。

从这里引理,我们可以隐隐地感觉到,如果一个连续的周期函数的周期可以写成 m T 1 + n T 2 , ∀ m , n m_{} T_1+n_{} T_2,\forall m,n mT1+nT2,m,n 的形式,那么,这个函数的周期可以任意小,也就是说,它应该要是一个常数函数。

定理和证明

有了以上的一些准备,我们就可以证明一些定理。

定理(和为周期函数的充要条件):
f ( x ) f(x) f(x) g ( x ) g(x) g(x) 是定义在 R \mathbb{R} R 上的连续非常值最小正周期分别为 T 1 , T 2 T_1,T_2 T1,T2 的周期函数,那么
f + g 为 周期函数 ↔ T 1 , T 2 可公度 f+g 为\text{周期函数} \leftrightarrow T_1,T2 \text{可公度} f+g周期函数T1,T2可公度

证明:
充分性是显然的。假设 T 1 = m a , T 2 = n a T_1=ma,T_2=na T1=ma,T2=na,那么 m n a mna mna 必然是 f + g f+g f+g 的周期。下证必要性。即证,若 T 1 , T 2 T_1,T_2 T1,T2不可公度,则 f + g f+g f+g必不是周期函数。
反证。假设 f + g f+g f+g是以 T T T为周期的周期函数。
f ( x + T ) + g ( x + T ) = f ( x ) + g ( x ) f(x+T)+g(x+T)=f(x)+g(x) f(x+T)+g(x+T)=f(x)+g(x)
则,
f ( x + T ) − f ( x ) = g ( x ) − g ( x + T ) ≡ φ ( x ) f(x+T)-f(x)=g(x)-g(x+T) \equiv \varphi(x) f(x+T)f(x)=g(x)g(x+T)φ(x)
易观察到, φ ( x ) \varphi(x) φ(x) T 1 T_1 T1为周期,也以 T 2 T_2 T2为周期,那么,它便以 m k T 1 + n k T 2 ≡ T k m_kT_1+n_kT_2\equiv T_k mkT1+nkT2Tk为周期。由引理知 T k → 0 T_k\rightarrow 0 Tk0,又因 φ ( x ) \varphi(x) φ(x)的连续性质,我们知道 φ ( x ) = 常 数 \varphi(x)=常数 φ(x)=
进一步,由 f ( x + T ) − f ( x ) = 常 数 f(x+T)-f(x)=常数 f(x+T)f(x)=,若 常 数 ≠ 0 常数 \neq 0 =0 意味 f f f是个无界函数,这和它是周期函数相矛盾。所以,
f ( x + T ) − f ( x ) = g ( x ) − g ( x + T ) = 0 f(x+T)-f(x)=g(x)-g(x+T) =0 f(x+T)f(x)=g(x)g(x+T)=0
f f f g g g必然以 T T T为周期。说明 T = k T 1 = l T 2 T=kT_1=lT_2 T=kT1=lT2,这和 T 1 , T 2 T_1,T_2 T1,T2不可公度是矛盾的。得证。

PS:
1、事实上,这里的必要性证明只要 f f f g g g中有一个是连续的即可。
2、非常值条件的设定是因为常值函数没太大意义。
3、定义在 R \mathbb{R} R上和连续的假设,是符合常规考虑的。
4、如果没有连续性和周期性的假设,那么有一些更广泛的讨论。可以参考一些书,比如《数学分析中的问题和反例》、《实分析中的反例 微积分中的反例》、《吉米多维奇数学分析习题集学习指引》、《数学分析拾遗》(赵显曾 著)、裴礼文的习题集等等。还有网上的一些中小学老师写的一些文章(鸟不拉屎错误连连)。
5、事实上,这里的最小正周期这个条件可以换为周期。

定理 (周期函数和的最小正周期, m , n > 1 m,n>1 m,n>1

f ( x ) f(x) f(x) g ( x ) g(x) g(x) 是定义在 R \mathbb{R} R 上的连续非常值最小正周期分别为 T 1 = n α , T 2 = m α T_1=n\alpha,T_2=m\alpha T1=nα,T2=mα 的周期函数,这里
m , n ∈ N , m , n > 1 , ( m , n ) = 1 , α 是正实数 \mathrm{m} ,\mathrm{n} \in \mathrm{N}, \mathrm{m}, \mathrm{n}>1, (\mathrm{m}, \mathrm{n})=1, \alpha \text{是正实数} m,nN,m,n>1,(m,n)=1,α是正实数
那么函数 h ( x ) = f ( x ) + g ( x ) \mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x})+g(x) h(x)=f(x)+g(x)是周期函数,且最小正周期为 m n α mn\alpha mnα

证明:

和为周期函数的充要条件知 h h h 是周期函数, m n α mn\alpha mnα 是一个周期,下证其为最小正周期。
只要证最小正周期为 m m m f 0 ( x ) : = f ( α x ) f_0(x):= f(\alpha x) f0(x):=f(αx)与最小正周期为 n n n g 0 ( x ) : = g ( α x ) g_0(x):=g(\alpha x) g0(x):=g(αx)之和 h 0 ( x ) h_0(x) h0(x)的最小正周期为 m n mn mn即可。

下面用反证。

m n mn mn不是最小正周期。因为 m ≠ n m\neq n m=n,必然存在 a < m n a<mn a<mn h 0 ( x ) h_0(x) h0(x)的最小正周期。那么 a a a不可能整除 m m m n n n中的任何一个,否则,不妨假设 a a a整除 m m m,那么 m m m h 0 h_0 h0的周期,也是 g 0 = h 0 − f 0 g_0 = h_0 - f_0 g0=h0f0的周期。则 n n n整除 m m m,这和题设条件矛盾。
因此, a a a不能整除 m m m n n n,故而 a a a不能整除 m n mn mn,这个和 a a a是最小正周期且 m n mn mn是周期矛盾。
得证。

定理 (周期函数和的最小正周期, m > 1 , n = 1 m>1,n=1 m>1,n=1

f ( x ) f(x) f(x) g ( x ) g(x) g(x) 是定义在 R \mathbb{R} R 上的连续非常值最小正周期分别为 T 1 = n α , T 2 = m α T_1=n\alpha,T_2=m\alpha T1=nα,T2=mα 的周期函数,这里
m ∈ N , m > 1 , n = 1 , α 是正实数 \mathrm{m} \in \mathrm{N}, \mathrm{m>1}, \mathrm{n}=1,\alpha \text{是正实数} mN,m>1,n=1,α是正实数
那么函数 h ( x ) = f ( x ) + g ( x ) \mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x})+g(x) h(x)=f(x)+g(x)是周期函数,且最小正周期可能为 m α m\alpha mα或者 α m k ( k 、 m 互 相 不 整 除 ) \frac{\alpha m}{k}(k、m互相不整除) kαm(km)

证明:

只要证最小正周期为 m m m f 0 ( x ) : = f ( α x ) f_0(x):= f(\alpha x) f0(x):=f(αx)与最小正周期为 1 1 1 g 0 ( x ) : = g ( α x ) g_0(x):=g(\alpha x) g0(x):=g(αx)之和 h 0 ( x ) h_0(x) h0(x)的最小正周期只可能为 m m m或者 m k \frac{m}{k} km即可。

只要证明在 k ≠ 1 k\neq1 k=1的情况下,若 m m m整除 k k k或者 k k k整除 m m m m / k m/k m/k都不可能是最小正周期即可。

s 1 = m / k < m s_1 = m/k<m s1=m/k<m 为整数,那么它是 h 0 h_0 h0的周期,也是 g 0 g_0 g0的周期,那么它也是 f 0 f_0 f0的周期,它和 m m m f 0 f_0 f0的最小正周期矛盾。

1 / s 2 = m / k 1/s_2 = m/k 1/s2=m/k ,其中 s 2 s_2 s2为整数,那么 1 本是 g 0 g_0 g0的周期,现也是 h 0 h_0 h0的周期,推得它也是 f 0 f_0 f0的周期,它和 m m m f 0 f_0 f0的最小正周期且 m > 1 m>1 m>1矛盾。

定理 (周期函数和的最小正周期, m = n = 1 m=n=1 m=n=1

f ( x ) f(x) f(x) g ( x ) g(x) g(x) 是定义在 R \mathbb{R} R 上的连续非常值最小正周期分别为 T 1 = α , T 2 = α T_1=\alpha,T_2=\alpha T1=α,T2=α 的周期函数, 则函数 h ( x ) = f ( x ) + g ( x ) \mathrm{h}(\mathrm{x})=\mathrm{f}(\mathrm{x})+\mathrm{g}(\mathrm{x}) h(x)=f(x)+g(x)的最小正周期为 α k \frac{\alpha}{k} kα k k k为某个确定的自然数,取到无穷说明最小正周期不存在,是常值函数)。

证明:
我们知道 α \alpha α h h h的一个周期,那么,最小正周期必为 α k \frac{\alpha}{k} kα k k k为某个确定的自然数)。 k k k f f f g g g的具体情况有关,无法确定。

举例如下图:
在这里插入图片描述

从图上可以看到,这是红蓝两个函数在一个周期内的图像,他们的周期都是 1,但是他们的和的后期就是 1 / k 1/k 1/k,图中我的 k = 5 k=5 k=5,其实可以等于任意的值。它们和的周期为 min ⁡ { 1 , ∣ 1 k ∣ } \min\{1,|\frac{1}{k}|\} min{1,k1}

我所用的 MATLAB 作图代码为:

clc
clear
k = 5;
T = 1/k;
x = 0:0.001:1;
y0 = sin(2*k*pi.*x);
y1 = y0;
y2 = y0;
y1(x>=0.5) = 0;
y2(x<0.5) = 0;
plot(x,y1,'red',x,y2,'blue','LineWidth',5);
axis([0 1 -2 2]);
h = legend('$f(x)$','$g(x)$');
set(h,'Interpreter','latex')
title('The period of $f(x)$ and $g(x)$ is 1, but the period of $f+g$ is $1/k$','Interpreter','LaTex','FontSize',13)
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页