曲面偏微分方程:参数化有限元方法

曲面偏微分方程:参数化有限元方法

前面介绍的 P \mathbf{P} P P d \mathbf{Pd} Pd,及其对应的同参等值延伸及投影自然延伸,对于曲面上有限元方法的理论分析起着至关重要的作用。

利普希茨参数曲面上的FEM

利普希茨参数化曲面

因为同参映射 P \mathbf{P} P的双利普希茨性,存在一个常数 L L L,使得
 (64)  L − 1 ∣ x 1 − x 2 ∣ ≤ ∣ x ~ 1 − x ~ 2 ∣ ≤ L ∣ x 1 − x 2 ∣ , x ~ i = P ( x i ) , i = 1 , 2 \begin{array}{ll}{\text { (64) }} & {L^{-1}\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right| \leq\left|\widetilde{\mathrm{x}}_{1}-\widetilde{\mathrm{x}}_{2}\right| \leq L\left|\mathrm{x}_{1}-\mathrm{x}_{2}\right|, \quad \tilde{\mathrm{x}}_{i}=\mathrm{P}\left(\mathrm{x}_{i}\right), i=1,2}\end{array}  (64) L1x1x2x 1x 2Lx1x2,x~i=P(xi),i=1,2

定义 T T T周围区域macro patches如下,这里 T T T表示的是 γ \gamma γ的一次逼近曲面 Γ \Gamma Γ的每个分片。
( 65 ) ω T = ∪ { T ′ : T ′ ∩ T ≠ ∅ } , ω ~ T = P ( ω T ) (65) \quad \omega_{T}=\cup\left\{T^{\prime}: T^{\prime} \cap T \neq \emptyset\right\}, \quad \tilde{\omega}_{T}=\mathbf{P}\left(\omega_{T}\right) (65)ωT={T:TT=},ω~T=P(ωT)

定义形正则化常数,这里 h T : = ∣ T ∣ 1 n h_{T}:=|T|^{\frac{1}{n}} hT:=Tn1,从表达式可以看出来,这个值越大,正则性越差。
( 66 ) σ : = sup ⁡ T max ⁡ T ∈ T diam ⁡ ( T ) h T (66) \quad \sigma:=\sup _{\mathcal{T}} \max _{T \in \mathcal{T}} \frac{\operatorname{diam}(T)}{h_{T}} (66)σ:=TsupTTmaxhTdiam(T)

我们用 T ^ \widehat{T} T 来表示参考单元单纯形。用 T = X T ( T ^ ) T=\mathbf{X}_{T}(\widehat{T}) T=XT(T )来表示逼近曲面的参数化。从(66)可以看得出来下式。这个很重要,要怎么理解呢? D X T D \mathbf{X}_{T} DXT就是一个线性变换,它的算子至于映射到 T T T上,模和 diam ⁡ ( T ) \operatorname{diam}(T) diam(T)同阶,那么 D X T D \mathbf{X}_{T} DXT就是 h T h_T hT阶的。
 (67)  h T ∣ w ∣ ≲ ∣ D X T w ∣ ≲ h T ∣ w ∣ , ∀ w ∈ R n \begin{array}{ll}{\text { (67) }} & {h_{T}|\mathrm{w}| \lesssim\left|D \mathrm{X}_{T} \mathrm{w}\right| \lesssim h_{T}|\mathrm{w}|, \quad \forall \mathrm{w} \in \mathbb{R}^{n}}\end{array}  (67) hTwDXTwhTw,wRn

因为投影的双利普希茨性,我们也知道$
D \chi_{T} 和 和 h_{T}$是同阶的。
( 68 ) h T ∣ w ∣ ≲ ∣ D χ T ( y ) w ∣ ≲ h T ∣ w ∣ ∀ w ∈ R n , y ∈ T ^ (68) \quad h_{T}|\mathrm{w}| \lesssim\left|D \chi_{T}(\mathrm{y}) \mathrm{w}\right| \lesssim h_{T}|\mathrm{w}| \quad \forall \mathrm{w} \in \mathbb{R}^{n}, \mathrm{y} \in \widehat{T} (68)hTwDχT(y)whTwwRn,yT

我们依然用tilde符号来表示在曲面 γ \gamma γ上,hat符号表示在参数域是(参考单元)上。 Γ \Gamma Γ的参数化表示为 X T \mathbf{X}_{T} XT γ \gamma γ的参数化表示为 χ T = P ∘ X T \chi_{T}=\mathbf{P} \circ \mathbf{X}_{T} χT=PXT,那么在macro patches上,有,
 (69)  L − 1 h T ∣ y 1 − y 2 ∣ ≤ ∣ x ~ 1 − x ~ 2 ∣ ≤ L h T ∣ y 1 − y 2 ∣ \begin{array}{ll}{\text { (69) }} & {L^{-1} h_{T}\left|\mathbf{y}_{1}-\mathbf{y}_{2}\right| \leq\left|\widetilde{\mathbf{x}}_{1}-\widetilde{\mathbf{x}}_{2}\right| \leq L h_{T}\left|\mathbf{y}_{1}-\mathbf{y}_{2}\right|}\end{array}  (69) L1hTy1y2x 1x 2LhTy1y2

各个区域上的函数值定义如下:
 (70)  v ^ T ( y ) : = v ~ T ( χ T ( y ) ) ∀ x ^ ∈ T ^  and  v T ( x ) : = v ~ T ( P ( x ) ) ∀ x ∈ T \begin{array}{ll}{\text { (70) } \quad \widehat{v}_{T}(\mathbf{y}):=\tilde{v}_{T}\left(\chi_{T}(\mathbf{y})\right) \quad \forall \widehat{\mathbf{x}} \in \widehat{T}} & {\text { and } \quad v_{T}(\mathbf{x}):=\tilde{v}_{T}(\mathbf{P}(\mathbf{x})) \quad \forall \mathbf{x} \in T}\end{array}  (70) v T(y):=v~T(χT(y))x T  and vT(x):=v~T(P(x))xT

多边形曲面上的微分几何

同以前的方式,可以定义第一标准型和面积元,
 (71)  g T : = ( D X T ) t D X T , q T : = det ⁡ g T , ∀ T ∈ T \begin{array}{ll}{\text { (71) }} & {\mathrm{g}_{T}:=\left(D \mathrm{X}_{T}\right)^{t} D \mathrm{X}_{T}, \quad q_{T}:=\sqrt{\operatorname{det} \mathrm{g}_{T}}, \quad \forall T \in \mathcal{T}}\end{array}  (71) gT:=(DXT)tDXT,qT:=detgT ,TT

且满足,
 (72)   eigen  ( g T ) ≈ h T 2 , q T ≈ h T n , ∀ T ∈ T \begin{array}{ll}{\text { (72) }} & {\text { eigen }\left(\mathrm{g}_{T}\right) \approx h_{T}^{2}, \quad q_{T} \approx h_{T}^{n}, \quad \forall T \in \mathcal{T}}\end{array}  (72)  eigen (gT)hT2,qThTn,TT

因为 D X T D \mathbf{X}_{T} DXT D χ T D \mathbf{\chi}_{T} DχT的同阶性,所以稳定化常数其实和网格尺寸是没有关系的,即
( 73 ) S χ ≈ 1 (73) \quad S_{\chi} \approx 1 (73)Sχ1

因为(72)我们知道 q q q q Γ q_\Gamma qΓ是同阶的,即
C 1 ≤ q q Γ ≤ C 2 C_{1} \leq \frac{q}{q_{\Gamma}} \leq C_{2} C1qΓqC2

回忆曲面梯度和拉普拉斯算子的定义,有,
 (75)  ∇ v ^ = ( D X ) t ∇ T v , ∇ T v = ( D X ) g Γ − 1 ∇ v ^ \begin{array}{ll}{\text { (75) }} & {\nabla \widehat{v}=(D \mathrm{X})^{t} \nabla_{\mathrm{T}} v, \quad \nabla_{\mathrm{T}} v=(D \mathrm{X}) \mathrm{g}_{\mathrm{\Gamma}}^{-1} \nabla \widehat{v}}\end{array}  (75) v =(DX)tTv,Tv=(DX)gΓ1v
 (76)  Δ Γ v = 1 q Γ div ⁡ ( q Γ g Γ − 1 ∇ v ^ ) \begin{array}{ll}{\text { (76) }} & {\Delta_{\Gamma} v=\frac{1}{q_{\Gamma}} \operatorname{div}\left(q_{\Gamma} \mathbf{g}_{\Gamma}^{-1} \nabla \widehat{v}\right)}\end{array}  (76) ΔΓv=qΓ1div(qΓgΓ1v )

使用分布积分公式,很容易看到:
∫ Γ ∇ Γ v ⋅ ∇ Γ w = ∑ T ∈ T − ∫ T w Δ Γ v + ∫ ∂ T w ∇ Γ v ⋅ μ T = ∑ T ∈ T − ∫ T w Δ Γ v + ∑ S ∈ S ∫ S w [ ∇ Γ v ] \begin{aligned} \int_{\Gamma} \nabla_{\Gamma} v \cdot \nabla_{\Gamma} w &=\sum_{T \in \mathcal{T}}-\int_{T} w \Delta_{\Gamma} v+\int_{\partial T} w \nabla_{\Gamma} v \cdot \boldsymbol{\mu}_{T} \\ &=\sum_{T \in \mathcal{T}}-\int_{T} w \Delta_{\Gamma} v+\sum_{S \in \mathcal{S}} \int_{S} w\left[\nabla_{\Gamma} v\right] \end{aligned} ΓΓvΓw=TTTwΔΓv+TwΓvμT=TTTwΔΓv+SSSw[Γv]
这里的跳跃,就定义为:
( 77 ) [ ∇ Γ v ] : = ∇ Γ v + ⋅ μ + + ∇ Γ v − ⋅ μ − (77) \quad\left[\nabla_{\Gamma} v\right]:=\nabla_{\Gamma} v_{+} \cdot \mu_{+}+\nabla_{\Gamma} v_{-} \cdot \mu_{-} (77)[Γv]:=Γv+μ++Γvμ

参数化有限元方法

所谓的参数化有限元方法就是,寻找 U : = U T ∈ V # ( T ) U:=U_{\mathcal{T}} \in \mathbb{V}_{\#}(\mathcal{T}) U:=UTV#(T),使得,
 (78)  ∫ Γ ∇ Γ U ⋅ ∇ Γ V = ∫ Γ F V ∀ V ∈ V # ( T ) \begin{array}{ll}{\text { (78) }} & {\int_{\Gamma} \nabla_{\Gamma} U \cdot \nabla_{\Gamma} V=\int_{\Gamma} F V \quad \forall V \in \mathbb{V}_{\#}(\mathcal{T})}\end{array}  (78) ΓΓUΓV=ΓFVVV#(T)
这里的 F ∈ L 2 , # ( Γ ) F \in L_{2, \#}(\Gamma) FL2,#(Γ)。这里定义了分片线性连续空间,及其对应的零均值空间:
V ( T ) : = { V ∈ C 0 ( Γ ) ∣ V ∣ T = V ^ ∘ X − 1  for some  V ^ ∈ P , T ∈ T } \mathbb{V}(\mathcal{T}):=\left\{V \in C^{0}(\Gamma)|V|_{T}=\widehat{V} \circ \mathrm{X}^{-1} \text { for some } \widehat{V} \in \mathcal{P}, T \in \mathcal{T}\right\} V(T):={VC0(Γ)VT=V X1 for some V P,TT}
V # ( T ) : = V ( T ) ∩ L 2 , # ( Γ ) \mathbb{V}_{\#}(\mathcal{T}):=\mathbb{V}(\mathcal{T}) \cap L_{2, \#}(\Gamma) V#(T):=V(T)L2,#(Γ)
P \mathcal{P} P是线性多项式空间。

因为 F ∈ L 2 , # ( Γ ) F \in L_{2, \#}(\Gamma) FL2,#(Γ),那么,我们也有:
 (79)  ∫ Γ ∇ Γ U ⋅ ∇ Γ V = ∫ Γ F V ∀ V ∈ V ( T ) \text { (79) } \quad \int_{\Gamma} \nabla_{\Gamma} U \cdot \nabla_{\Gamma} V=\int_{\Gamma} F V \quad \forall V \in \mathbb{V}(\mathcal{T})  (79) ΓΓUΓV=ΓFVVV(T)

介绍一个引理:
在这里插入图片描述
证明:用一下误差矩阵的定义以及(78),再用一下 γ \gamma γ上的弱形式,并放到 Γ \Gamma Γ上,我们有,
∫ Γ ∇ Γ ( u − U ) ⋅ ∇ Γ V = ∫ γ ∇ γ u ~ ⋅ ∇ γ V ~ + ∫ Γ ∇ Γ u ⋅ E Γ ∇ Γ V − ∫ Γ F V \int_{\Gamma} \nabla_{\Gamma}(u-U) \cdot \nabla_{\Gamma} V=\int_{\gamma} \nabla_{\gamma} \widetilde{u} \cdot \nabla_{\gamma} \widetilde{V}+\int_{\Gamma} \nabla_{\Gamma} u \cdot \mathbf{E}_{\Gamma} \nabla_{\Gamma} V-\int_{\Gamma} F V ΓΓ(uU)ΓV=γγu γV +ΓΓuEΓΓVΓFV

几何一致性

Γ \Gamma Γ上的一致庞加莱估计

回忆一下庞加莱不等式:
 (82)  ∥ v ∥ L 2 ( Γ ) ≲ ∥ ∇ v ∥ L 2 ( Γ ) ∀ v ∈ H # 1 ( Γ ) \begin{array}{ll}{\text { (82) }} & {\|v\|_{L_{2}(\Gamma)} \lesssim\|\nabla v\|_{L_{2}(\Gamma)} \quad \forall v \in H_{\#}^{1}(\Gamma)}\end{array}  (82) vL2(Γ)vL2(Γ)vH#1(Γ)

几何估计量

定义一个几何元指示子,反应的是曲面及其逼近的导数之间的距离:
 (83)  λ T : = ∥ D ( P − I T P ) ∥ L ∞ ( T ) = ∥ D P − I ∥ L ∞ ( T ) ∀ T ∈ T \text { (83) } \quad \lambda_{T}:=\left\|D\left(\mathbf{P}-\mathcal{I}_{\mathcal{T}} \mathbf{P}\right)\right\|_{L_{\infty}(T)}=\|D \mathbf{P}-\mathbf{I}\|_{L_{\infty}(T)} \quad \forall T \in \mathcal{T}  (83) λT:=D(PITP)L(T)=DPIL(T)TT

相应的几何估计量就定义为:
 (84)  λ T ( Γ ) : = max ⁡ T ∈ T λ T \begin{array}{ll}{\text { (84) }} & {\lambda_{\mathcal{T}}(\Gamma):=\max _{T \in \mathcal{T}} \lambda_{T}}\end{array}  (84) λT(Γ):=maxTTλT

用一下复合函数求导,我们有:
( 85 ) max ⁡ y ∈ T ˉ ∣ D ( χ T − X T ) ( y ) ∣ min ⁡ { ∣ D − χ T ( y ) ∣ , ∣ D − X T ( y ) ∣ } ≤ S χ λ T ∀ T ∈ T (85) \quad \max _{\mathbf{y} \in \bar{T}} \frac{\left|D\left(\chi_{T}-\mathbf{X}_{T}\right)(\mathbf{y})\right|}{\min \left\{\left|D^{-} \chi_{T}(\mathbf{y})\right|,\left|D^{-} \mathbf{X}_{T}(\mathbf{y})\right|\right\}} \leq S_{\chi} \lambda_{T} \quad \forall T \in \mathcal{T} (85)yTˉmaxmin{DχT(y),DXT(y)}D(χTXT)(y)SχλTTT

另外定义两个量,他们是 h T h_T hT的高阶无穷小量,
 (86)  β T : = ∥ P − I T P ∥ L ∞ ( T ) , β T ( Γ ) : = max ⁡ T ∈ T β T \begin{array}{ll}{\text { (86) }} & {\beta_{T}:=\left\|\mathbf{P}-\mathcal{I}_{\mathcal{T}} \mathbf{P}\right\|_{L_{\infty}(T)}, \quad \beta_{\mathcal{T}}(\Gamma):=\max _{T \in \mathcal{T}} \beta_{T}}\end{array}  (86) βT:=PITPL(T),βT(Γ):=maxTTβT
( 87 ) μ T : = β T + λ T 2 , μ T ( Γ ) : = max ⁡ T ∈ T μ T (87) \quad \mu_{T}:=\beta_{T}+\lambda_{T}^{2}, \quad \mu_{\mathcal{T}}(\Gamma):=\max _{T \in \mathcal{T}} \mu_{T} (87)μT:=βT+λT2,μT(Γ):=TTmaxμT

C1曲面的几何一致性误差

给一个推论,
 Corollary  32  (geometric consistency errors for  C 1 , α  surfaces). If  X  and  χ  satisfy  ( 67 )  and  ( 68 ) ,  then for all  T ∈ T  we have   (88)  ∥ 1 − q − 1 q Γ ∥ L ∞ ( T ^ ) , ∥ I − grg ⁡ − 1 ∥ L ∞ ( T ^ ) , ∥ ν Γ − ν ∥ L ∞ ( T ) ≲ λ T  where the hidden constants depend on  S χ ≈ 1  defined in  ( 38 ) .  Moreover,   (89)  ∥ E ∥ L ∞ ( T ^ ) + ∥ E Γ ∥ L ∞ ( T ^ ) ≲ λ T ∀ T ∈ T \begin{array}{l}{\text { Corollary } 32 \text { (geometric consistency errors for } C^{1, \alpha} \text { surfaces). If } \mathrm{X} \text { and } \chi \text { satisfy }} \\ {(67) \text { and }(68), \text { then for all } T \in \mathcal{T} \text { we have }} \\ {\begin{array}{ll}{\text { (88) }\left\|1-q^{-1} q_{\Gamma}\right\|_{L_{\infty}(\widehat{T})},\left\|\mathbf{I}-\operatorname{grg}^{-1}\right\|_{L_{\infty}(\widehat{T})},\left\|\nu_{\Gamma}-\nu\right\|_{L_{\infty}(T)} \lesssim \lambda_{T}} \\ {\text { where the hidden constants depend on } S_{\chi} \approx 1 \text { defined in }(38) . \text { Moreover, }} \\ {\text { (89) }} & {\|\mathbf{E}\|_{L_{\infty}(\widehat{T})}+\left\|\mathbf{E}_{\Gamma}\right\|_{L_{\infty}(\widehat{T})} \lesssim \lambda_{T} \quad \forall T \in \mathcal{T}}\end{array}}\end{array}  Corollary 32 (geometric consistency errors for C1,α surfaces). If X and χ satisfy (67) and (68), then for all TT we have  (88) 1q1qΓL(T ),Igrg1L(T ),νΓνL(T)λT where the hidden constants depend on Sχ1 defined in (38). Moreover,  (89) EL(T )+EΓL(T )λTTT
这个证明和自然而然。用一下引理16和24。(88)的表达通通小于 λ ∞ \lambda_\infty λ,用(85)放一下即可。 E E E的估计用(47)。

C2曲面的几何一致性误差

首先要让曲面和逼近曲面足够近,使得,
 (90)  β T ( Γ ) < 1 2 K ∞ ⇒ Γ ⊂ N \begin{array}{ll}{\text { (90) }} & {{ \beta }_\mathcal{T}(\Gamma)<\frac{1}{2 K_{\infty}} \Rightarrow \Gamma \subset \mathcal{N}}\end{array}  (90) βT(Γ)<2K1ΓN
其次,要让两个不同的投影走一个来回还是属于一个macro patches。
( 91 ) P d ∘ P − 1 ( T ~ ) ⊂ ω ~ T ∀ T ∈ T (91) \quad \mathrm{P}_{d} \circ \mathrm{P}^{-1}(\widetilde{T}) \subset \widetilde{\omega}_{T} \quad \forall T \in \mathcal{T} (91)PdP1(T )ω TTT
那么走一个来回之后,曲面上的两点的距离满足,
( 92 ) ∣ x ~ − P d ∘ P − 1 ( x ~ ) ∣ = ∣ P ( x ) − P d ( x ) ∣ ≤ 2 β T ∀ x ∈ T (92) \quad\left|\widetilde{\mathbf{x}}-\mathbf{P}_{d} \circ \mathbf{P}^{-1}(\widetilde{\mathbf{x}})\right|=\left|\mathbf{P}(\mathbf{x})-\mathbf{P}_{d}(\mathbf{x})\right| \leq 2 \beta_{T} \quad \forall \mathbf{x} \in T (92)x PdP1(x )=P(x)Pd(x)2βTxT

那么,有这么一个推论,
 Corollary  33  (geometric consistency errors for  C 2  surfaces). If  ( 90 )  and  ( 74 )  hold, then so do the following estimates for all  T ∈ T  (93)  ∥ d ∥ L ∞ ( T ) ≲ β T , ∥ ν − ν Γ ∥ L ∞ ( T ) ≲ λ T , ∥ 1 − q − 1 q Γ ∥ L ∞ ( T ) ≲ μ T  where all the geometric quantities are defined using the parametrizations  χ = P d ∘ X  and  X .  Moreover,   (94)  ∥ E ∥ L ∞ ( T ) , ∥ E Γ ∥ L ∞ ( T ) ≲ μ T ∀ T ∈ T \begin{array}{l}{\text { Corollary } 33 \text { (geometric consistency errors for } C^{2} \text { surfaces). If }(90) \text { and }(74)} \\ {\text { hold, then so do the following estimates for all } T \in \mathcal{T}} \\ {\text { (93) }\|d\|_{L_{\infty}(T)} \lesssim \beta_{T}, \quad\left\|\nu-\nu_{\Gamma}\right\|_{L_{\infty}(T)} \lesssim \lambda_{T}, \quad\left\|1-q^{-1} q_{\Gamma}\right\|_{L_{\infty}(T)} \lesssim \mu_{T}} \\ {\text { where all the geometric quantities are defined using the parametrizations } \chi=\mathbf{P}_{d} \circ \mathbf{X}} \\ {\text { and } \mathbf{X} . \text { Moreover, }} \\ {\begin{array}{llll}{\text { (94) }} & {\|\mathbf{E}\|_{L_{\infty}(T)},\left\|\mathbf{E}_{\Gamma}\right\|_{L_{\infty}(T)}} & {\lesssim \mu_{T}} & {\forall T \in \mathcal{T}}\end{array}}\end{array}  Corollary 33 (geometric consistency errors for C2 surfaces). If (90) and (74) hold, then so do the following estimates for all TT (93) dL(T)βT,ννΓL(T)λT,1q1qΓL(T)μT where all the geometric quantities are defined using the parametrizations χ=PdX and X. Moreover,  (94) EL(T),EΓL(T)μTTT
证明只需用到C2曲面的相应估计式,以及推论已有结果即可。
由上可以得到一些有用的结果,利用 ω ~ \tilde \omega ω~的利普希茨性质,可以有,
∣ w ~ ( x ~ ) − w ~ ( P d ∘ P − 1 ( x ~ ) ) ∣ ≤ ∥ ∇ γ w ~ ∥ L ∞ ( ω ~ T ) ∣ x ~ − P d ∘ P − 1 ( x ~ ) ∣ ≤ 2 ∥ ∇ γ w ~ ∥ L ∞ ( ω ~ T ) β T \left|\widetilde{w}(\widetilde{\mathbf{x}})-\widetilde{w}\left(\mathbf{P}_{d} \circ \mathbf{P}^{-1}(\widetilde{\mathbf{x}})\right)\right| \leq\left\|\nabla_{\gamma} \widetilde{w}\right\|_{L_{\infty}\left(\widetilde{\omega}_{T}\right)}\left|\widetilde{\mathbf{x}}-\mathbf{P}_{d} \circ \mathbf{P}^{-1}(\widetilde{\mathbf{x}})\right| \leq 2\left\|\nabla_{\gamma} \widetilde{w}\right\|_{L_{\infty}\left(\widetilde{\omega}_{T}\right)} \beta_{T} w (x )w (PdP1(x ))γw L(ω T)x PdP1(x )2γw L(ω T)βT

下面介绍一个命题,
 Proposition 34 (mismatch between  P  and  P d  ). Assume that (67) as well as the   assumptions (74), (90) and (91) hold. Then there exists  λ ∗ > 0  such for  w ~ ∈ H 1 ( γ )  and  T ∈ T  we have  ∥ w ~ − w ~ ∘ P d ∘ P − 1 ∥ L 2 ( T ~ ) ≲ β T ∥ w ~ ∥ H 1 ( ω ~ T )  provided  λ T ≤ λ ∗  and  ω ~ T  is a patch in  γ  around  T ~ . \begin{array}{l}{\text { Proposition 34 (mismatch between } \mathbf{P} \text { and } \mathbf{P}_{d} \text { ). Assume that (67) as well as the }} \\ {\text { assumptions (74), (90) and (91) hold. Then there exists } \lambda_{*}>0 \text { such for } \widetilde{w} \in H^{1}(\gamma)} \\ {\text { and } T \in \mathcal{T} \text { we have }} \\ {\qquad\left\|\widetilde{w}-\widetilde{w} \circ \mathbf{P}_{d} \circ \mathbf{P}^{-1}\right\|_{L_{2}(\widetilde{T})} \lesssim \beta_{T}\|\widetilde{w}\|_{H^{1}\left(\widetilde{\omega}_{T}\right)}} \\ {\text { provided } \lambda_{T} \leq \lambda_{*} \text { and } \widetilde{\omega}_{T} \text { is a patch in } \gamma \text { around } \widetilde{T} .}\end{array}  Proposition 34 (mismatch between P and Pd ). Assume that (67) as well as the  assumptions (74), (90) and (91) hold. Then there exists λ>0 such for w H1(γ) and TT we have w w PdP1L2(T )βTw H1(ω T) provided λTλ and ω T is a patch in γ around T .
这个命题的证明分为3步:

  • reduce到 R n \mathbb{R}^{n} Rn
  • 光滑化
  • 估计各项
  • ϵ \epsilon ϵ的界

抓关键步骤,简言之,就是先把要证的东西做个参数域的转换,
∥ w ~ − w ~ ∘ ψ ∥ L 2 ( T ~ ) ≲ h T n / 2 ∥ w ^ − w ^ ∘ ψ ^ ∥ L 2 ( T ^ ) \|\widetilde{w}-\widetilde{w} \circ \psi\|_{L_{2}(\widetilde{T})} \lesssim h_{T}^{n / 2}\|\widehat{w}-\widehat{w} \circ \widehat{\psi}\|_{L_{2}(\widehat{T})} w w ψL2(T )hTn/2w w ψ L2(T )

再把转换出来的东西拆成几部分:
∥ w ^ − w ^ ∘ ψ ^ ∥ L 2 ( T ^ ) ≲ ∥ w ^ − w ^ ε ∥ L 2 ( T ^ ) + ∥ w ^ ε − w ^ ε ∘ ψ ^ ∥ L 2 ( T ^ ) + ∥ w ^ ε ∘ ψ ^ − w ^ ∘ ψ ^ ∥ L 2 ( T ^ ) \|\widehat{w}-\widehat{w} \circ \widehat{\psi}\|_{L_{2}(\widehat{T})} \lesssim\left\|\widehat{w}-\widehat{w}_{\varepsilon}\right\|_{L_{2}(\widehat{T})}+\left\|\widehat{w}_{\varepsilon}-\widehat{w}_{\varepsilon} \circ \widehat{\psi}\right\|_{L_{2}(\widehat{T})}+\left\|\widehat{w}_{\varepsilon} \circ \widehat{\psi}-\widehat{w} \circ \widehat{\psi}\right\|_{L_{2}(\widehat{T})} w w ψ L2(T )w w εL2(T )+w εw εψ L2(T )+w εψ w ψ L2(T )

估计第一部分……
∥ w ^ − w ^ ε ∥ L 2 ( T ^ ) ≲ ε ∣ w ^ ∣ H 1 ( R n ) ≲ ε ∣ w ^ ∣ H 1 ( ω ^ T ) \left\|\widehat{w}-\widehat{w}_{\varepsilon}\right\|_{L_{2}(\widehat{T})} \lesssim \varepsilon|\widehat{w}|_{H^{1}\left(\mathbb{R}^{n}\right)} \lesssim \varepsilon|\widehat{w}|_{H^{1}\left(\widehat{\omega}_{T}\right)} w w εL2(T )εw H1(Rn)εw H1(ω T)

估计第三部分……
∥ ( w ^ ε − w ^ ) ∘ ψ ^ ∥ L 2 ( T ^ ) ≲ ∥ w ^ ε − w ^ ∥ L 2 ( ω ^ T ) ≲ ε ∣ w ^ ∣ H 1 ( ω ^ T ) \left\|\left(\widehat{w}_{\varepsilon}-\widehat{w}\right) \circ \widehat{\psi}\right\|_{L_{2}(\widehat{T})} \lesssim\left\|\widehat{w}_{\varepsilon}-\widehat{w}\right\|_{L_{2}\left(\widehat{\omega}_{T}\right)} \lesssim \varepsilon|\widehat{w}|_{H^{1}\left(\widehat{\omega}_{T}\right)} (w εw )ψ L2(T )w εw L2(ω T)εw H1(ω T)

估计第二部分……
∥ w ^ ε − w ^ ε ∘ ψ ^ ∥ L 2 ( T ^ ) 2 ≲ ε n ∑ i ∥ w ^ ε − w ^ ε ∘ ψ ^ ∥ L ∞ ( B ( y i , ε ) ∩ T ^ ) ≲ ε 2 ∑ i ∣ w ^ ∣ H 1 2 ( B ( y i , 3 ε ) ) ≲ ε 2 ∣ w ^ ∣ H 1 ( R n ) 2 ≲ ε 2 ∣ w ^ ∣ H 1 ( ω ^ T ) 2 \begin{aligned}\left\|\widehat{w}_{\varepsilon}-\widehat{w}_{\varepsilon} \circ \widehat{\psi}\right\|_{L_{2}(\widehat{T})}^{2} & \lesssim \varepsilon^{n} \sum_{i}\left\|\widehat{w}_{\varepsilon}-\widehat{w}_{\varepsilon} \circ \widehat{\psi}\right\|_{L_{\infty}\left(B\left(\mathbf{y}_{i}, \varepsilon\right) \cap \widehat{T}\right)} \\ & \lesssim \varepsilon^{2} \sum_{i}|\widehat{w}|_{H^{1}}^{2}\left(B\left(\mathbf{y}_{i}, 3 \varepsilon\right)\right) \lesssim \varepsilon^{2}|\widehat{w}|_{H^{1}\left(\mathbb{R}^{n}\right)}^{2} \lesssim \varepsilon^{2}|\widehat{w}|_{H^{1}\left(\widehat{\omega}_{T}\right)}^{2} \end{aligned} w εw εψ L2(T )2εniw εw εψ L(B(yi,ε)T )ε2iw H12(B(yi,3ε))ε2w H1(Rn)2ε2w H1(ω T)2

估计 ϵ \epsilon ϵ……
ε ≤ 2 L h T − 1 β T \varepsilon \leq 2 L h_{T}^{-1} \beta_{T} ε2LhT1βT

把所有东西合起来,完事。
∥ w ~ − w ~ ∘ ψ ∥ L 2 ( T ~ ) 2 ≲ h T n ∥ w ^ − w ^ ∘ ψ ^ ∥ L 2 ( T ^ ) 2 ≲ h T n ε 2 ∣ w ^ ∣ H 1 ( ω ^ T ) 2 ≲ h T n h T − 2 β T 2 h T 2 − n ∣ w ~ ∣ H 1 ( w ~ T ) 2 = β T 2 ∣ w ~ ∣ H 1 ( ω ~ T ) 2 \begin{aligned}\|\widetilde{w}-\widetilde{w} \circ \psi\|_{L_{2}(\widetilde{T})}^{2} & \lesssim h_{T}^{n}\|\widehat{w}-\widehat{w} \circ \widehat{\psi}\|_{L_{2}(\widehat{T})}^{2} \lesssim h_{T}^{n} \varepsilon^{2}|\widehat{w}|_{H^{1}\left(\widehat{\omega}_{T}\right)}^{2} \\ & \lesssim h_{T}^{n} h_{T}^{-2} \beta_{T}^{2} h_{T}^{2-n}|\widetilde{w}|_{H^{1}\left(\widetilde{w}_{T}\right)}^{2}=\beta_{T}^{2}|\widetilde{w}|_{H^{1}\left(\widetilde{\omega}_{T}\right)}^{2} \end{aligned} w w ψL2(T )2hTnw w ψ L2(T )2hTnε2w H1(ω T)2hTnhT2βT2hT2nw H1(w T)2=βT2w H1(ω T)2

下面有另外一个命题,
 Proposition 35 (Lipschitz perturbation). Let  Ω 1 , Ω 2 ⊂ ⊂ Ω ⊂ R n + 1  be Lipschitz  bounded domains and  L : Ω 1 → Ω 2  be a bi-Lipschitz isomorphism. If  r : = max ⁡ x ∈ Ω 1 ∣ L ( x ) − x ∣  is sufficiently small so that  ( Ω 1 ∪ Ω 2 ) + B ( 0 , r ) ⊂ Ω  then for all  g ∈ H 1 ( Ω )  we have  ∥ g − g ∘ L ∥ L 2 ( Ω 1 ) ≲ r ∥ g ∥ H 1 ( Ω ) \begin{array}{l}{\text { Proposition 35 (Lipschitz perturbation). Let } \Omega_{1}, \Omega_{2} \subset \subset \Omega \subset \mathbb{R}^{n+1} \text { be Lipschitz}} \\ {\text { bounded domains and } \mathbf{L}: \Omega_{1} \rightarrow \Omega_{2} \text { be a bi-Lipschitz isomorphism. If }} \\ {\qquad r:=\max _{\mathbf{x} \in \Omega_{1}}|\mathbf{L}(\mathbf{x})-\mathbf{x}|} \\ {\text { is sufficiently small so that }\left(\Omega_{1} \cup \Omega_{2}\right)+B(0, r) \subset \Omega \text { then for all } g \in H^{1}(\Omega) \text { we have }} \\ {\qquad\|g-g \circ \mathbf{L}\|_{L^{2}\left(\Omega_{1}\right)} \lesssim r\|g\|_{H^{1}(\Omega)}}\end{array}  Proposition 35 (Lipschitz perturbation). Let Ω1,Ω2ΩRn+1 be Lipschitz bounded domains and L:Ω1Ω2 be a bi-Lipschitz isomorphism. If r:=maxxΩ1L(x)x is sufficiently small so that (Ω1Ω2)+B(0,r)Ω then for all gH1(Ω) we have ggLL2(Ω1)rgH1(Ω)

先验误差分析

C2曲面的先验误差估计

 Lemma  36  (approximability in  H 1 ( Γ ) ) .  Let  γ  be a surface of class  C 2  and  u ~ ∈ H 2 ( γ ) .  Let  K ∞  be defined in  ( 30 )  and  β T ( Γ )  be given in  ( 86 ) .  Then we have   (95)  inf ⁡ V ∈ V ( T ) ∥ ∇ Γ ( u ~ ∘ P d − V ) ∥ L 2 ( Γ ) ≲ h T ∣ u ~ ∣ H 2 ( γ ) + β T ( Γ ) K ∞ ∥ ∇ γ u ~ ∥ L 2 ( γ ) \begin{array}{l}{ \text { Lemma }\left.36 \text { (approximability in } H^{1}(\Gamma)\right) . \text { Let } \gamma \text { be a surface of class } C^{2} \text { and } \widetilde{u} \in} \\ {H^{2}(\gamma) . \text { Let } K_{\infty} \text { be defined in }(30) \text { and } \beta_{\mathcal{T}}(\Gamma) \text { be given in }(86) . \text { Then we have }} \\ {\begin{array}{llll}{\text { (95) }} & {\inf _{V \in \mathrm{V}(\mathcal{T})}\left\|\nabla_{\Gamma}\left(\widetilde{u} \circ \mathbf{P}_{d}-V\right)\right\|_{L_{2}(\Gamma)}} & {\lesssim h_{\mathcal{T}}|\widetilde{u}|_{H^{2}(\gamma)}+\beta_{\mathcal{T}}(\Gamma) K_{\infty}\left\|\nabla_{\gamma} \widetilde{u}\right\|_{L_{2}(\gamma)}}\end{array}}\end{array}  Lemma 36 (approximability in H1(Γ)). Let γ be a surface of class C2 and u H2(γ). Let K be defined in (30) and βT(Γ) be given in (86). Then we have  (95) infVV(T)Γ(u PdV)L2(Γ)hTu H2(γ)+βT(Γ)Kγu L2(γ)
这个引理告诉我们的是,解在 H 1 H^1 H1空间中逼近的下界是可控的。
它的证明用到整体下界小等于分片下界和:
( 96 ) inf ⁡ V ∈ V ( T ) ∥ ∇ Γ ( u ~ ∘ P d − V ) ∥ L 2 ( Γ ) 2 ≲ ∑ T ∈ T inf ⁡ V T ∈ V ( T ) ∥ ∇ Γ ( u ~ ∘ P d − V T ) ∥ L 2 ( T ) 2 (96) \quad \inf _{V \in \mathbf{V}(\mathcal{T})}\left\|\nabla_{\Gamma}\left(\widetilde{u} \circ \mathbf{P}_{d}-V\right)\right\|_{L_{2}(\Gamma)}^{2} \lesssim \sum_{T \in \mathcal{T}} \inf _{V_{T} \in \mathbf{V}(T)}\left\|\nabla_{\Gamma}\left(\widetilde{u} \circ \mathbf{P}_{d}-V_{T}\right)\right\|_{L_{2}(T)}^{2} (96)VV(T)infΓ(u PdV)L2(Γ)2TTVTV(T)infΓ(u PdVT)L2(T)2

下面是 H 1 H^1 H1先验误差估计:
 Theorem  37 ( H 1  a-priori error estimate for  C 2  surfaces). Let  γ  be of class  C 2 f ~ ∈ L 2 , # ( γ )  and  u ~ ∈ H 2 ( γ )  be the solution of  ( 18 ) .  Let  U ∈ V # ( T )  be the solution   to  ( 78 )  with  F = f ~ ∘ P q q r  defined via the lift  P .  If the geometric assumptions  ( 69 ) ,  (90), and (91) are valid, then  ∥ ∇ Γ ( u ~ ∘ P − U ) ∥ L 2 ( Γ ) ≲ ( h T + λ τ ( Γ ) ) ∥ f ~ ∥ L 2 ( γ ) ≲ h τ ∥ f ~ ∥ L 2 ( γ )  as well as  ∥ ∇ Γ ( u ~ ∘ P d − U ) ∥ L 2 ( Γ ) ≲ ( h T + μ T ( Γ ) ) ∥ f ~ ∥ L 2 ( γ ) ≲ h T ∥ f ~ ∥ L 2 ( γ ) \begin{array}{l}{\text { Theorem } 37\left(H^{1} \text { a-priori error estimate for } C^{2} \text { surfaces). Let } \gamma \text { be of class } C^{2}\right.} \\ {\tilde{f} \in L_{2, \#}(\gamma) \text { and } \widetilde{u} \in H^{2}(\gamma) \text { be the solution of }(18) . \text { Let } U \in \mathbb{V}_{\#}(\mathcal{T}) \text { be the solution }} \\ {\text { to }(78) \text { with } F=\widetilde{f} \circ \mathbf{P} \frac{q}{q_{\mathrm{r}}} \text { defined via the lift } \mathbf{P} . \text { If the geometric assumptions }(69),} \\ {\text { (90), and (91) are valid, then }} \\ {\qquad\left\|\nabla_{\Gamma}(\widetilde{u} \circ \mathbf{P}-U)\right\|_{L_{2}(\Gamma)} \lesssim(h _\mathcal{T}+\lambda \tau(\Gamma))\|\widetilde{f}\|_{L_{2}(\gamma)} \lesssim h \tau\|\widetilde{f}\|_{L_{2}(\gamma)}} \\ {\text { as well as }} \\ {\qquad\left\|\nabla_{\Gamma}\left(\widetilde{u} \circ \mathbf{P}_{d}-U\right)\right\|_{L_{2}(\Gamma)} \lesssim\left(h_{\mathcal{T}}+\mu_{\mathcal{T}}(\Gamma)\right)\|\tilde{f}\|_{L_{2}(\gamma)} \lesssim h_{\mathcal{T}}\|\tilde{f}\|_{L_{2(\gamma)}}}\end{array}  Theorem 37(H1 a-priori error estimate for C2 surfaces). Let γ be of class C2f~L2,#(γ) and u H2(γ) be the solution of (18). Let UV#(T) be the solution  to (78) with F=f Pqrq defined via the lift P. If the geometric assumptions (69), (90), and (91) are valid, then Γ(u PU)L2(Γ)(hT+λτ(Γ))f L2(γ)hτf L2(γ) as well as Γ(u PdU)L2(Γ)(hT+μT(Γ))f~L2(γ)hTf~L2(γ)
这个估计表明了参数化方法在 H 1 H^1 H1空间中的一阶收敛性。

L 2 L^2 L2空间中,我们也有相应的估计:
 Theorem 38 (  L 2  a-priori error estimate for  C 2  surfaces). Let  γ  be of class  C 2  and   be described by a generic lift  P  of class  C 2 .  Let the geometric conditions  ( 69 ) ,  ,   and  ( 91 )  be satisfied. Let  u ~ ∈ H # 1 ( γ )  solve  ( 19 )  and  U ∈ V # ( T )  solve  ( 78 )  with  F = f ~ ∘ P q q T .  Then   (97)  ∥ u ~ ∘ P − U ∥ L 2 ( Γ ) ≲ h T 2 ∥ f ~ ∥ L 2 ( γ ) \begin{array}{l}{\text { Theorem 38 ( } L_{2} \text { a-priori error estimate for } C^{2} \text { surfaces). Let } \gamma \text { be of class } C^{2} \text { and }} \\ {\text { be described by a generic lift } \mathbf{P} \text { of class } C^{2} . \text { Let the geometric conditions }(69), \text { , }} \\ {\text { and }(91) \text { be satisfied. Let } \widetilde{u} \in H_{\#}^{1}(\gamma) \text { solve }(19) \text { and } U \in \mathbb{V}_{\#}(\mathcal{T}) \text { solve }(78) \text { with }} \\ {F=\widetilde{f} \circ \mathbf{P} \frac{q}{q_{\mathrm{T}}} . \text { Then }} \\ {\begin{array}{ll}{\text { (97) }} & {\|\widetilde{u} \circ \mathbf{P}-U\|_{L_{2}(\Gamma)} \lesssim h_{\mathcal{T}}^{2}\|\widetilde{f}\|_{L_{2}(\gamma)}}\end{array}}\end{array}  Theorem 38 ( L2 a-priori error estimate for C2 surfaces). Let γ be of class C2 and  be described by a generic lift P of class C2. Let the geometric conditions (69), ,  and (91) be satisfied. Let u H#1(γ) solve (19) and UV#(T) solve (78) with F=f PqTq. Then  (97) u PUL2(Γ)hT2f L2(γ)
它的证明,其实就是用到所谓的对偶技巧。
构造辅助问题:
∫ γ ∇ γ z ~ ⋅ ∇ γ w ~ = ∫ γ ( u ~ − U ~ # ) w ~ ∀ w ~ ∈ H # 1 ( γ ) \int_{\gamma} \nabla_{\gamma} \widetilde{z} \cdot \nabla_{\gamma} \widetilde{w}=\int_{\gamma}\left(\widetilde{u}-\widetilde{U}_{\#}\right) \widetilde{w} \quad \forall \widetilde{w} \in H_{\#}^{1}(\gamma) γγz γw =γ(u U #)w w H#1(γ)
它的有限元逼近是:
∫ Γ ∇ Γ Z ⋅ ∇ Γ W = ∫ Γ ( u # − U ) W , ∀ W ∈ V ( T ) \int_{\Gamma} \nabla_{\Gamma} Z \cdot \nabla_{\Gamma} W=\int_{\Gamma}\left(u_{\#}-U\right) W, \quad \forall W \in \mathbb{V}(\mathcal{T}) ΓΓZΓW=Γ(u#U)W,WV(T)
然后想办法将精确解和数值解的零中值化的差值表达成如下:
∥ u ~ − U ~ # ∥ L 2 ( γ ) 2 = ∫ γ ∇ γ ( u ~ − U ~ ) ⋅ ∇ γ ( z ~ − Z ~ ) + ∫ γ f ~ ( Z ∘ P d − 1 − Z ∘ P − 1 ) + ∫ γ ∇ γ U ~ ⋅ E ∇ γ Z ~ \begin{aligned}\left\|\widetilde{u}-\widetilde{U}_{\#}\right\|_{L_{2}(\gamma)}^{2} &=\int_{\gamma} \nabla_{\gamma}(\widetilde{u}-\widetilde{U}) \cdot \nabla_{\gamma}(\widetilde{z}-\widetilde{Z}) \\ &+\int_{\gamma} \widetilde{f}\left(Z \circ \mathbf{P}_{d}^{-1}-Z \circ \mathbf{P}^{-1}\right) \\ &+\int_{\gamma} \nabla_{\gamma} \widetilde{U} \cdot \mathbf{E} \nabla_{\gamma} \widetilde{Z} \end{aligned} u U #L2(γ)2=γγ(u U )γ(z Z )+γf (ZPd1ZP1)+γγU EγZ
之后,分别估计每一项的界,就OK了。
上面的结论是对于 C 2 C^2 C2曲面的,我们相信,对于 C 3 C^3 C3曲面,取 P = P d \mathbf{P}=\mathbf{P}_{d} P=Pd,我们有更好的结论如下:
 (99)  ∥ u ~ ∘ P − U ∥ L 2 ( Γ ) ≲ h T 2 ∣ d ∣ W ∞ 2 ( N ) ∥ f ~ ∥ L 2 ( γ ) \begin{array}{ll}{\text { (99) }} & {\|\widetilde{u} \circ \mathbf{P}-U\|_{L_{2}(\Gamma)} \lesssim h_{\mathcal{T}}^{2}|d|_{W_{\infty}^{2}(\mathcal{N})}\|\widetilde{f}\|_{L_{2}(\gamma)}}\end{array}  (99) u PUL2(Γ)hT2dW2(N)f L2(γ)

C1曲面的先验误差估计

对于C1曲面,我们同样有 H 1 H^1 H1空间中的逼近性质:
 Lemma  39  (approximability in  H 1 ( Γ ) ) .  Let  γ  be a surface of class  C 1 , α  and  u ~ ∈ H 1 + s ( γ ) ,  where  0 < s < α < 1  or  0 < s ≤ α = 1.  Then we have   (100)  inf ⁡ V ∈ V ( T ) ∥ ∇ Γ ( u ~ ∘ P − V ) ∥ L 2 ( Γ ) ≲ h T s ∣ u ~ ∣ H 1 + s ( γ ) \begin{array}{l}{ \text { Lemma }\left.39 \text { (approximability in } H^{1}(\Gamma)\right) . \text { Let } \gamma \text { be a surface of class } C^{1, \alpha} \text { and }} \\ {\widetilde{u} \in H^{1+s}(\gamma), \text { where } 0<s<\alpha<1 \text { or } 0<s \leq \alpha=1 . \text { Then we have }} \\ {\begin{array}{lll}{\text { (100) }} & {\inf _{V \in \mathbb{V}(\mathcal{T})}\left\|\nabla_{\Gamma}(\widetilde{u} \circ \mathbf{P}-V)\right\|_{L_{2}(\Gamma)} \lesssim h_{\mathcal{T}}^{s}|\widetilde{u}|_{H^{1+s}(\gamma)}}\end{array}}\end{array}  Lemma 39 (approximability in H1(Γ)). Let γ be a surface of class C1,α and u H1+s(γ), where 0<s<α<1 or 0<sα=1. Then we have  (100) infVV(T)Γ(u PV)L2(Γ)hTsu H1+s(γ)

那么C1曲面的 H 1 H^1 H1先验误差估计就变成了:
 Theorem  40 ( H 1  a-priori error estimate for  C 1 , α  surfaces). Let  γ  be of class  C 1 , α , 0 < α ≤ 1 ,  and assume that the geometric assumptions  ( 69 ) , ( 90 ) ,  and  ( 91 )  are   valid. Let  f ^ ∈ L 2 , # ( γ )  and  u ~ ∈ H 1 + s ( γ )  be the solution of  ( 18 )  and satisfy  \begin{array}{l}{\text { Theorem } 40\left(H^{1} \text { a-priori error estimate for } C^{1, \alpha} \text { surfaces). Let } \gamma \text { be of class } C^{1, \alpha},\right.} \\ {0<\alpha \leq 1, \text { and assume that the geometric assumptions }(69),(90), \text { and }(91) \text { are }} \\ {\text { valid. Let } \widehat{f} \in L_{2, \#}(\gamma) \text { and } \widetilde{u} \in H^{1+s}(\gamma) \text { be the solution of }(18) \text { and satisfy }}\end{array}  Theorem 40(H1 a-priori error estimate for C1,α surfaces). Let γ be of class C1,α,0<α1, and assume that the geometric assumptions (69),(90), and (91) are  valid. Let f L2,#(γ) and u H1+s(γ) be the solution of (18) and satisfy 
∥ u ~ ∥ H 1 + s ( γ ) ≲ ∥ f ~ ∥ L 2 ( γ )  provided  0 < s < α < 1  or  0 < s ≤ α = 1.  If  U ∈ V # ( T )  is the solution to  ( 78 )  with  F = f ~ ∘ P q q r  defined via the lift  P ,  then  ∥ ∇ Γ ( u ~ ∘ P − U ) ∥ L 2 ( Γ ) ≲ h T s ∥ u ~ ∥ H 1 + s ( γ ) + λ T ( Γ ) ∥ f ~ ∥ L 2 ( γ ) ≲ h T s ∥ f ~ ∥ L 2 ( γ ) \begin{array}{l}{\qquad\|\widetilde{u}\|_{H^{1+s}(\gamma)} \lesssim\|\tilde{f}\|_{L_{2}(\gamma)}} \\ {\text { provided } 0<s<\alpha<1 \text { or } 0<s \leq \alpha=1 . \text { If } U \in \mathbb{V}_{\#}(\mathcal{T}) \text { is the solution to }(78)} \\ {\text { with } F=\widetilde{f} \circ \mathbf{P} \frac{q}{q_{\mathrm{r}}} \text { defined via the lift } \mathbf{P}, \text { then }} \\ {\quad\left\|\nabla_{\Gamma}(\widetilde{u} \circ \mathbf{P}-U)\right\|_{L_{2}(\Gamma)} \lesssim h_{\mathcal{T}}^{s}\|\widetilde{u}\|_{H^{1+s}(\gamma)}+\lambda_{\mathcal{T}}(\Gamma)\|\tilde{f}\|_{L_{2}(\gamma)} \lesssim h_{\mathcal{T}}^{s}\|\tilde{f}\|_{L_{2}(\gamma)}}\end{array} u H1+s(γ)f~L2(γ) provided 0<s<α<1 or 0<sα=1. If UV#(T) is the solution to (78) with F=f Pqrq defined via the lift P, then Γ(u PU)L2(Γ)hTsu H1+s(γ)+λT(Γ)f~L2(γ)hTsf~L2(γ)

后验误差分析

后验误差估计依赖于数值解 U U U和数据,但是不用到精确解 u ~ \tilde u u~

要说明后验误差估计,我们可以先了解一下scott-zhang插值:
I T s z : H 1 ( Γ ) → V ( T ) \mathcal{I}_{\mathcal{T}}^{\mathrm{sz}}: H^{1}(\Gamma) \rightarrow \mathbb{V}(\mathcal{T}) ITsz:H1(Γ)V(T)
及其性质,
( 101 ) ∥ v − I T s z v ∥ L 2 ( T ) ≲ h T ∥ ∇ Γ v ∥ L 2 ( ω T ) , ∥ ∇ Γ I T s z v ∥ L 2 ( T ) ≲ ∥ ∇ Γ v ∥ L 2 ( ω T ) (101) \quad\left\|v-\mathcal{I}_{\mathcal{T}}^{\mathrm{sz}} v\right\|_{L^{2}(T)} \lesssim h_{T}\left\|\nabla_{\Gamma} v\right\|_{L^{2}\left(\omega_{T}\right)}, \quad\left\|\nabla_{\Gamma} \mathcal{I}_{\mathcal{T}}^{\mathrm{sz}} v\right\|_{L^{2}(T)} \lesssim\left\|\nabla_{\Gamma} v\right\|_{L^{2}\left(\omega_{T}\right)} (101)vITszvL2(T)hTΓvL2(ωT),ΓITszvL2(T)ΓvL2(ωT)

我们还需要定义两个函数量“内部”和“跳跃残差”:
R T ( V ) : = F ∣ T + Δ Γ V ∣ T ∀ T ∈ T J S ( V ) : = ∇ Γ V + ∣ S ⋅ μ S + + ∇ Γ V − ∣ S ⋅ μ S − ∀ S ∈ S T \begin{aligned} R_{T}(V) &:=\left.F\right|_{T}+\left.\Delta_{\Gamma} V\right|_{T} \quad \forall T \in \mathcal{T} \\ J_{S}(V) &:=\left.\nabla_{\Gamma} V^{+}\right|_{S} \cdot \boldsymbol{\mu}_{S}^{+}+\left.\nabla_{\Gamma} V^{-}\right|_{S} \cdot \boldsymbol{\mu}_{S}^{-} \quad \forall S \in S_{\mathcal{T}} \end{aligned} RT(V)JS(V):=FT+ΔΓVTTT:=ΓV+SμS++ΓVSμSSST
以及元指示子和误差估计子:
η T ( V , T ) 2 : = h T 2 ∥ R T ( V ) ∥ L 2 ( T ) 2 + h T ∥ J ∂ T ( V ) ∥ L 2 ( ∂ T ) 2 ∀ T ∈ T \eta _\mathcal{T}(V, T)^{2}:=h_{T}^{2}\left\|R_{T}(V)\right\|_{L^{2}(T)}^{2}+h_{T}\left\|J_{\partial T}(V)\right\|_{L^{2}(\partial T)}^{2} \quad \forall T \in \mathcal{T} ηT(V,T)2:=hT2RT(V)L2(T)2+hTJT(V)L2(T)2TT
η T ( V ) 2 : = ∑ T ∈ T η T ( V , T ) 2 \eta_{\mathcal{T}}(V)^{2}:=\sum_{T \in \mathcal{T}} \eta \mathcal{T}(V, T)^{2} ηT(V)2:=TTηT(V,T)2

那么,我们首先有C1曲面的后验误差上界(H1空间):
 Theorem  41  (a-posteriori upper bound for  C 1 , α  surfaces). Let  γ  be of class  C 1 , α ,  be parametrized by  χ = P ∘ X  and satisfy the geometric assumption (69). Let  u ~ ∈ H 1 ( γ )  be the solution to  ( 18 )  and  U ∈ V # ( T )  be the solution to (78) with  F = f ~ ∘ P q q r ∈ L 2 , # ( Γ ) .  Then, for  U ~ : = U ∘ P − 1 : γ → R  we have  ∥ ∇ γ ( u ~ − U ~ ) ∥ L 2 ( γ ) 2 ≲ η T ( U ) 2 + λ T 2 ( Γ ) ∥ f ~ ∥ L 2 ( γ ) 2 \begin{array}{l}{\text { Theorem } 41 \text { (a-posteriori upper bound for } C^{1, \alpha} \text { surfaces). Let } \gamma \text { be of class } C^{1, \alpha},} \\ {\text { be parametrized by } \chi=\mathbf{P} \circ \mathbf{X} \text { and satisfy the geometric assumption (69). Let }} \\ {\widetilde{u} \in H^{1}(\gamma) \text { be the solution to }(18) \text { and } U \in \mathbb{V}_{\#}(\mathcal{T}) \text { be the solution to (78) with }} \\ {F=\tilde{f} \circ \mathbf{P} \frac{q}{q_{\mathrm{r}}} \in L_{2, \#}(\Gamma) . \text { Then, for } \tilde{U}:=U \circ \mathbf{P}^{-1}: \gamma \rightarrow \mathbb{R} \text { we have }} \\ {\qquad\left\|\nabla_{\gamma}(\widetilde{u}-\widetilde{U})\right\|_{L^{2}(\gamma)}^{2} \lesssim \eta_{\mathcal{T}}(U)^{2}+\lambda_{\mathcal{T}}^{2}(\Gamma)\|\widetilde{f}\|_{L_{2}(\gamma)}^{2}}\end{array}  Theorem 41 (a-posteriori upper bound for C1,α surfaces). Let γ be of class C1,α, be parametrized by χ=PX and satisfy the geometric assumption (69). Let u H1(γ) be the solution to (18) and UV#(T) be the solution to (78) with F=f~PqrqL2,#(Γ). Then, for U~:=UP1:γR we have γ(u U )L2(γ)2ηT(U)2+λT2(Γ)f L2(γ)2
证明使用一个非常常用的套路,将误差所构成的双线性型拆成三部分:
( 102 ) ∫ γ ∇ γ ( u ~ − U ~ ) ⋅ ∇ γ v ~ = I 1 + I 2 + I 3 (102) \quad \int_{\gamma} \nabla_{\gamma}(\widetilde{u}-\widetilde{U}) \cdot \nabla_{\gamma} \widetilde{v}=I_{1}+I_{2}+I_{3} (102)γγ(u U )γv =I1+I2+I3
I 1 = − ∫ Γ ∇ Γ U ⋅ ∇ Γ ( v − V ) + ∫ Γ F ( v − V ) I 2 = ∫ γ ∇ γ U ~ ⋅ E ∇ γ v ~ I 3 = ∫ γ f ~ v ~ − ∫ Γ F v \begin{aligned} I_{1} &=-\int_{\Gamma} \nabla_{\Gamma} U \cdot \nabla_{\Gamma}(v-V)+\int_{\Gamma} F(v-V) \\ I_{2} &=\int_{\gamma} \nabla_{\gamma} \widetilde{U} \cdot \mathbf{E} \nabla_{\gamma} \widetilde{v} \\ I_{3} &=\int_{\gamma} \widetilde{f} \widetilde{v}-\int_{\Gamma} F v \end{aligned} I1I2I3=ΓΓUΓ(vV)+ΓF(vV)=γγU Eγv =γf v ΓFv
易知,
( 103 ) I 1 = ∑ T ∈ T ∫ T R T ( U ) ( v − V ) + ∑ S ∈ S ∫ S J S ( U ) ( v − V ) (103) \quad I_{1}=\sum_{T \in \mathcal{T}} \int_{T} R_{T}(U)(v-V)+\sum_{S \in \mathcal{S}} \int_{S} J_{S}(U)(v-V) (103)I1=TTTRT(U)(vV)+SSSJS(U)(vV)
( 104 ) I 1 ≲ η T ( U ) ∥ ∇ Γ v ∥ L 2 ( Γ ) ≲ η T ( U ) ∥ ∇ γ v ~ ∥ L 2 ( γ ) (104) \quad I_{1} \lesssim \eta_{\mathcal{T}}(U)\left\|\nabla_{\Gamma} v\right\|_{L^{2}(\Gamma)} \lesssim \eta_{\mathcal{T}}(U)\left\|\nabla_{\gamma} \tilde{v}\right\|_{L^{2}(\gamma)} (104)I1ηT(U)ΓvL2(Γ)ηT(U)γv~L2(γ)

之后分别估计每一部分的界即可。

对于C1下界,有如下估计:
 Theorem  42  (a-posteriori lower bound for  C 1 , α  surfaces). Under the same condi-   tions of Theorem  41  (a-posteriori upper bound for  C 1 , α  surfaces), we have  η T ( U , T ) 2 ≲ ∥ ∇ γ ( u ~ − U ~ ) ∥ L 2 ( ω ~ T ) 2 + osc ⁡ T ( F , ω T ) 2 + λ T 2 ( ω T ) \begin{array}{l}{\text { Theorem } 42 \text { (a-posteriori lower bound for } C^{1, \alpha} \text { surfaces). Under the same condi- }} \\ {\text { tions of Theorem } 41 \text { (a-posteriori upper bound for } C^{1, \alpha} \text { surfaces), we have }} \\ {\qquad \eta_{\mathcal{T}}(U, T)^{2} \lesssim\left\|\nabla_{\gamma}(\widetilde{u}-\widetilde{U})\right\|_{L^{2}\left(\widetilde{\omega}_{T}\right)}^{2}+\operatorname{osc}_{\mathcal{T}}\left(F, \omega_{T}\right)^{2}+\lambda_{\mathcal{T}}^{2}\left(\omega_{T}\right)}\end{array}  Theorem 42 (a-posteriori lower bound for C1,α surfaces). Under the same condi-  tions of Theorem 41 (a-posteriori upper bound for C1,α surfaces), we have ηT(U,T)2γ(u U )L2(ω T)2+oscT(F,ωT)2+λT2(ωT)

下面介绍C2曲面的后验误差上界,为此,介绍常量“数据震荡”如下:
osc ⁡ T ( F , T ) 2 : = h T 2 ∥ F − F ˉ ∥ L 2 ( T ) 2 , osc ⁡ T ( F ) 2 : = ∑ T ∈ T osc ⁡ T ( F , T ) 2 \operatorname{osc} \mathcal{T}(F, T)^{2}:=h_{T}^{2}\|F-\bar{F}\|_{L^{2}(T)}^{2}, \quad \operatorname{osc} \mathcal{T}(F)^{2}:=\sum_{T \in \mathcal{T}} \operatorname{osc} \mathcal{T}(F, T)^{2} oscT(F,T)2:=hT2FFˉL2(T)2,oscT(F)2:=TToscT(F,T)2

那么,我们有如下定理(C2曲面的后验误差上界):
 Theorem  43  (a-posteriori upper bound for  C 2  surfaces). Let  γ  be of class  C 2  and  ( 67 ) , ( 74 ) , ( 90 ) ,  and (91) hold. Let  u ~  be the solution of  ( 18 )  with  f ~ ∈ L 2 , # ( γ )  and  U ∈ V ( T )  be the solution to  ( 78 )  with  F = f ~ ∘ P q q r ,  where  q  corresponds to the   parametrization  χ = P ∘ X  of  γ  . Then  ∥ ∇ γ ( u ~ − U ∘ P d − 1 ) ∥ L 2 ( γ ) 2 ≲ η T ( U ) 2 + μ T 2 ( Γ ) ∥ f ~ ∥ L 2 ( γ ) 2 \begin{array}{l}{\text { Theorem } 43 \text { (a-posteriori upper bound for } C^{2} \text { surfaces). Let } \gamma \text { be of class } C^{2} \text { and }} \\ {(67),(74),(90), \text { and (91) hold. Let } \widetilde{u} \text { be the solution of }(18) \text { with } \widetilde{f} \in L_{2, \#}(\gamma) \text { and }} \\ {U \in \mathbb{V}(\mathcal{T}) \text { be the solution to }(78) \text { with } F=\widetilde{f} \circ \mathrm{P} \frac{q}{q_{\mathrm{r}}}, \text { where } q \text { corresponds to the }} \\ {\text { parametrization } \chi=\mathrm{P} \circ \mathrm{X} \text { of } \gamma \text { . Then }} \\ {\qquad\left\|\nabla_{\gamma}\left(\widetilde{u}-U \circ \mathbf{P}_{d}^{-1}\right)\right\|_{L_{2}(\gamma)}^{2} \lesssim \eta _\mathcal{T}(U)^{2}+\mu_{\mathcal{T}}^{2}(\Gamma)\|\tilde{f}\|_{L_{2}(\gamma)}^{2}}\end{array}  Theorem 43 (a-posteriori upper bound for C2 surfaces). Let γ be of class C2 and (67),(74),(90), and (91) hold. Let u  be the solution of (18) with f L2,#(γ) and UV(T) be the solution to (78) with F=f Pqrq, where q corresponds to the  parametrization χ=PX of γ . Then γ(u UPd1)L2(γ)2ηT(U)2+μT2(Γ)f~L2(γ)