曲面扰动理论之C2曲面的H2扩张

曲面扰动理论之C2曲面的H2扩张

我们在后续提到的窄带(narrow band)方法和迹方法(trace)的分析中,对解要求:

u ~ ∈ H 2 ( γ ) \widetilde{u} \in H^{2}(\gamma) u H2(γ)
∥ u ∥ H 2 ( N ( δ ) ) ≲ δ 1 2 ∥ u ~ ∥ H 2 ( γ ) \|u\|_{H^{2}(\mathcal{N}(\delta))} \lesssim \delta^{\frac{1}{2}}\|\widetilde{u}\|_{H^{2}(\gamma)} uH2(N(δ))δ21u H2(γ)

事实上,我们定义自然扩张
u ( x ) = u ~ ( x − d ( x ) ∇ d ( x ) ) ∀ x ∈ N ( δ ) u(\mathrm{x})=\tilde{u}(\mathrm{x}-d(\mathrm{x}) \nabla d(\mathrm{x})) \quad \forall \mathrm{x} \in \mathcal{N}(\delta) u(x)=u~(xd(x)d(x))xN(δ)
可以使得上述估计成立。

问题在于,这里我们需要 P d \mathbf{P}_{d} Pd C 2 C^2 C2的,那么 γ \gamma γ要是 C 3 C^3 C3的,这对曲面有了更高的要求。为了使得对于 C 2 C^2 C2曲面也有上述估计,我们需要借助 C 2 C^2 C2曲面的 H 2 H^2 H2扩张。下面来说明这个。

ε = c δ ≤ δ 2 \varepsilon=c \delta \leq \frac{\delta}{2} ε=cδ2δ,使得
N ( δ + 2 ε ) ⊂ N \mathcal{N}(\delta+2 \varepsilon) \subset \mathcal{N} N(δ+2ε)N
定义函数:
d ˉ ε ( x ) : = d ⋆ ρ ε ( x ) = ∫ B ε d ( x − y ) ρ ε ( y ) d y ∀ x ∈ N ( δ ) \bar{d}_{\varepsilon}(\mathrm{x}):=d \star \rho_{\varepsilon}(\mathrm{x})=\int_{B_{\varepsilon}} d(\mathrm{x}-\mathrm{y}) \rho_{\varepsilon}(\mathrm{y}) d \mathrm{y} \quad \forall \mathrm{x} \in \mathcal{N}(\delta) dˉε(x):=dρε(x)=Bεd(xy)ρε(y)dyxN(δ)
表示距离函数 d d d和支撑在单位球 B ε : = B ( 0 , ε ) B_{\varepsilon}:=B(0, \varepsilon) Bε:=B(0,ε)上的光滑镜像对称软化函数 ρ ε ( x ) \rho_{\varepsilon}(\mathbf{x}) ρε(x)在单位球上做卷积。
γ E \gamma_{E} γE表示其零水平集:
γ ε : = { x ∈ N : d ˉ ε ( x ) = 0 } \gamma_{\varepsilon}:=\left\{\mathrm{x} \in \mathcal{N}: \quad \bar{d}_{\varepsilon}(\mathrm{x})=0\right\} γε:={xN:dˉε(x)=0}
d ε d_{\varepsilon} dε表示 γ ε \gamma_\varepsilon γε的距离函数。

首先,我们先不加证明地引用几个结论。

结论一:

在这里插入图片描述这里的豪斯多夫距离定义为:
d H ( X , Y ) = max ⁡ { sup ⁡ x ∈ X i n f y ϵ Y d ( x , y ) , sup ⁡ y ∈ Y i n f x ϵ X ( x , y ) } d_{H}(X, Y)=\max \left\{\sup _{x \in X} i n f_{y \epsilon Y} d(x, y), \sup _{y \in Y} i n f_{x \epsilon X}(x, y)\right\} dH(X,Y)=max{xXsupinfyϵYd(x,y),yYsupinfxϵX(x,y)}
这个引理实际上告诉我们的是,用卷积定义出来的 d ˉ ε \bar{d}_{\varepsilon} dˉε d d d的某种“距离”(本身和一阶导)、 d ˉ ε \bar{d}_{\varepsilon} dˉε的二阶导数、二者的零水平集 γ \gamma γ γ ε \gamma_\varepsilon γε的距离,三者都可以被距离函数的半范 ∣ d ∣ W ∞ 2 |d|_{W_{\infty}^{2}} dW2所控制。表示的是 d ˉ ε \bar{d}_{\varepsilon} dˉε的有界性质。

结论二:

 Lemma  26  (properties of  d ε ) .  The function  d ε ∈ C ∞ ( N ( δ ) )  and satisfies  ∥ d ε ∥ W ∞ 2 ( N ( δ ) ) + ε ∥ d ε ∥ W ∞ 3 ( N ( δ ) ) ≲ ∣ d ∣ W ∞ 2 ( N )  Moreover, the following error estimates hold  ∥ ∇ ( d − d ε ) ∥ L ∞ ( N ( δ ) ) ≲ δ ∣ d ∣ W ∞ 2 ( N ) , ∥ 1 − ∇ d ⋅ ∇ d ε ∥ L ∞ ( N ( δ ) ) ≲ δ 2 ∣ d ∣ W ∞ 2 ( N ) \begin{array}{l}{ \text { Lemma }\left.26 \text { (properties of } d_{\varepsilon}\right) . \text { The function } d_{\varepsilon} \in C^{\infty}(\mathcal{N}(\delta)) \text { and satisfies }} \\ {\qquad \begin{aligned}\left\|d_{\varepsilon}\right\|_{W_{\infty}^{2}}(\mathcal{N}(\delta))+\varepsilon\left\|d_{\varepsilon}\right\|_{W_{\infty}^{3}}(\mathcal{N}(\delta)) & \lesssim|d|_{W_{\infty}^{2}(\mathcal{N})} \\ \text { Moreover, the following error estimates hold } \\\left\|\nabla\left(d-d_{\varepsilon}\right)\right\|_{L_{\infty}(\mathcal{N}(\delta))} & \lesssim \delta|d|_{W_{\infty}^{2}(\mathcal{N})}, \quad\left\|1-\nabla d \cdot \nabla d_{\varepsilon}\right\|_{L_{\infty}(\mathcal{N}(\delta))} \lesssim \delta^{2}|d|_{W_{\infty}^{2}(\mathcal{N})} \end{aligned}}\end{array}  Lemma 26 (properties of dε). The function dεC(N(δ)) and satisfies dεW2(N(δ))+εdεW3(N(δ)) Moreover, the following error estimates hold (ddε)L(N(δ))dW2(N)δdW2(N),1ddεL(N(δ))δ2dW2(N)
这个性质本质上想告诉我们的是, γ ε \gamma_\varepsilon γε的距离函数 d ε d_\varepsilon dε及其导数被 ∣ d ∣ W ∞ 2 |d|_{W_{\infty}^{2}} dW2的控制关系。

结论三:

 Corollary  27  (property of  P ε ) .  The lift  P ε  belongs to  C ∞ ( N ( δ ) )  and satisfies  ∣ P ε ∣ W ∞ 2 ( N ( δ ) ) ≲ ∣ d ∣ W ∞ 2 ( N )  for suitable constants  C 1 , C 2  so that  C 1 δ ≤ ε ≤ δ 2  and  C 2 ε ∣ d ∣ W ∞ 2 ( N ) ≤ 1 \begin{array}{l}{ \text { Corollary }\left.27 \text { (property of } P_{\varepsilon}\right) . \text { The lift } P_{\varepsilon} \text { belongs to } C^{\infty}(\mathcal{N}(\delta)) \text { and satisfies }} \\ {\qquad\left|\mathbf{P}_{\varepsilon}\right|_{W_{\infty}^{2}(\mathcal{N}(\delta))} \lesssim|d|_{W_{\infty}^{2}(\mathcal{N})}} \\ {\text { for suitable constants } C_{1}, C_{2} \text { so that } C_{1} \delta \leq \varepsilon \leq \frac{\delta}{2} \text { and } C_{2} \varepsilon|d|_{W_{\infty}^{2}(\mathcal{N})} \leq 1}\end{array}  Corollary 27 (property of Pε). The lift Pε belongs to C(N(δ)) and satisfies PεW2(N(δ))dW2(N) for suitable constants C1,C2 so that C1δε2δ and C2εdW2(N)1
这个推论告诉我们的是到 γ ε \gamma_\varepsilon γε的投影算子(lift) P ε \mathbf{P}_\varepsilon Pε W ∞ 2 W_{\infty}^{2} W2空间中半范被距离函数 d d d的在该空间中的半范控制。它是关于投影算子的界。

结论四:

 Proposition  28 ( H 2  extension  ) .  Let  ε  and  δ  be as in Corollary  27  (property of  P ε )  ,   and assume that  ε ∣ d ∣ W ∞ 2 ( N ) ≤ c  for a sufficiently small constant  c .  If  u ~ ∈ H 2 ( γ ) ,  then  u ∈ H 2 ( N ( δ ) )  and  ∥ u ∥ H 2 ( N ( δ ) ) ≲ δ 1 2 ∣ d ∣ W ∞ 2 ( N ) ∥ u ~ ∥ H 2 ( γ )  Moreover, the trace of  u  on  γ  coincides with  u ~ ,  that is  u  an  H 2  extension of  u ~  .  \begin{array}{l}{ \text { Proposition }\left.28\left(H^{2} \text { extension }\right) . \text { Let } \varepsilon \text { and } \delta \text { be as in Corollary } 27 \text { (property of } \mathbf{P}_{\varepsilon}\right) \text { , }} \\ {\text { and assume that } \varepsilon|d|_{W_{\infty}^{2}(\mathcal{N})} \leq c \text { for a sufficiently small constant } c . \text { If } \widetilde{u} \in H^{2}(\gamma),} \\ {\text { then } u \in H^{2}(\mathcal{N}(\delta)) \text { and }} \\ {\qquad\|u\|_{H^{2}(\mathcal{N}(\delta))} \lesssim \delta^{\frac{1}{2}}|d|_{W_{\infty}^{2}(\mathcal{N})}\|\widetilde{u}\|_{H^{2}(\gamma)}} \\ {\text { Moreover, the trace of } u \text { on } \gamma \text { coincides with } \widetilde{u}, \text { that is } u \text { an } H^{2} \text { extension of } \widetilde{u} \text { . }}\end{array}  Proposition 28(H2 extension ). Let ε and δ be as in Corollary 27 (property of Pε) ,  and assume that εdW2(N)c for a sufficiently small constant c. If u H2(γ), then uH2(N(δ)) and uH2(N(δ))δ21dW2(N)u H2(γ) Moreover, the trace of u on γ coincides with u , that is u an H2 extension of u  . 
这里的 u u u u ~ \tilde u u~的一种扩张。它定义为 u ε u_\varepsilon uε的自然扩张,即:
u ( x ) : = u ε ( x − d ε ( x ) ∇ d ε ( x ) ) ∀ x ∈ N ( δ ) u(\mathrm{x}):=u_{\varepsilon}\left(\mathrm{x}-d_{\varepsilon}(\mathrm{x}) \nabla d_{\varepsilon}(\mathrm{x})\right) \quad \forall \mathrm{x} \in \mathcal{N}(\delta) u(x):=uε(xdε(x)dε(x))xN(δ)
那么 u ε u_\varepsilon uε的值是多少呢?它定义为 γ \gamma γ上的到 γ ε \gamma_\varepsilon γε投影逆的 u ~ \tilde u u~值,即:
u ε = u ~ ∘ Q ε u_{\varepsilon}=\widetilde{u} \circ \mathbf{Q}_{\varepsilon} uε=u Qε Q ε = P ε − 1 : γ ε → γ \mathbf{Q}_{\varepsilon}=\mathbf{P}_{\varepsilon}^{-1}: \gamma_{\varepsilon} \rightarrow \gamma Qε=Pε1:γεγ
这样定义的扩张 u u u,就能满足它在领域上的 H 2 H^2 H2范数被曲面上的 H 2 H^2 H2范数控制。也就回到了,我们最开始想要得到东西。

结论五:

 Lemma  29  (PDE satisfied by  u ε ) .  If  γ  is closed and of class  C 2 ,  then  γ ε  is also   closed and of class  C ∞ ,  and the extension  u ε = u ~ ∘ Q ε  satisfies on  γ ε − μ ~ ε div ⁡ γ ε ( 1 μ ~ ε A ~ ε ∇ γ ε u ε ) = f ~ ε  where  A ~ ε : = ( I − d ε D 2 d ε ) Π ( I − d ε D 2 d ε ) ∘ Q ε , Π  stands for the orthogonal projection  Π = ( I − ∇ d ⊗ ∇ d )  on  γ  and  μ ~ ε : = q ε q ∘ Q ε  reads  μ ~ ε = det ⁡ ( I − d ε D 2 d ε ) ( ∇ d ⋅ ∇ d ε ) ∘ Q ε \begin{array}{l}{ \text { Lemma }\left.29 \text { (PDE satisfied by } u_{\varepsilon}\right) . \text { If } \gamma \text { is closed and of class } C^{2}, \text { then } \gamma_{\varepsilon} \text { is also }} \\ {\text { closed and of class } C^{\infty}, \text { and the extension } u_{\varepsilon}=\widetilde{u} \circ \mathrm{Q}_{\varepsilon} \text { satisfies on } \gamma_{\varepsilon}} \\ {\qquad-\widetilde{\mu}_{\varepsilon} \operatorname{div}_{\gamma_{\varepsilon}}\left(\frac{1}{\tilde{\mu}_{\varepsilon}} \widetilde{\mathbf{A}}_{\varepsilon} \nabla_{\gamma_{\varepsilon}} u_{\varepsilon}\right)=\tilde{f}_{\varepsilon}} \\ {\text { where } \tilde{\mathbf{A}}_{\varepsilon}:=\left(\mathbf{I}-d_{\varepsilon} D^{2} d_{\varepsilon}\right) \Pi\left(\mathbf{I}-d_{\varepsilon} D^{2} d_{\varepsilon}\right) \circ \mathbf{Q}_{\varepsilon}, \Pi \text { stands for the orthogonal projection }} \\ {\Pi=(\mathbf{I}-\nabla d \otimes \nabla d) \text { on } \gamma \text { and } \widetilde{\mu}_{\varepsilon}:=\frac{q_{\varepsilon}}{q \circ Q_{\varepsilon}} \text { reads }} \\ {\widetilde{\mu}_{\varepsilon}=\operatorname{det}\left(\mathbf{I}-d_{\varepsilon} D^{2} d_{\varepsilon}\right)\left(\nabla d \cdot \nabla d_{\varepsilon}\right) \circ \mathbf{Q}_{\varepsilon}}\end{array}  Lemma 29 (PDE satisfied by uε). If γ is closed and of class C2, then γε is also  closed and of class C, and the extension uε=u Qε satisfies on γεμ εdivγε(μ~ε1A εγεuε)=f~ε where A~ε:=(IdεD2dε)Π(IdεD2dε)Qε,Π stands for the orthogonal projection Π=(Idd) on γ and μ ε:=qQεqε reads μ ε=det(IdεD2dε)(ddε)Qε
这里假设 u ~ \tilde u u~ γ \gamma γ上泊松方程的解, f ~ \tilde f f~是相对应的右端项。这里同样把 f ~ ε \tilde f_\varepsilon f~ε投影到了 γ ϵ \gamma_\epsilon γϵ上:
f ε ~ : = f ~ ∘ Q ε \widetilde{f_{\varepsilon}}:=\widetilde{f} \circ \mathbf{Q}_{\varepsilon} fε :=f Qε
这个引理告诉我们,曲面 γ \gamma γ上的泊松方程到 γ ϵ \gamma_\epsilon γϵ上仍然是满足的,只不过是方程中加了一些“系数”。

 Proposition 30 (PDE satisfied by  u )  . Let  ε  and  δ  be as in Corollary  27  (property   of  P ε ) .  The extension  u ∈ H 2 ( N ( δ ) )  of  u ~  of Proposition  28  satisfies the  P D E − 1 μ ε div ⁡ ( μ ε B ε ∇ u ) = f ε  in  N ( δ ) − 1 μ ε div ⁡ ( μ ε B ε ) − 1 Π ε A ε Π ε ( I − d ε D 2 d ε ) − 1 μ ε : = 1 μ ~ ε ∘ P ε det ⁡ ( I − d ε D 2 d ε ) and  μ ~ ε  is defined in Lemma  29 \begin{array}{l}{ \text { Proposition 30 (PDE satisfied by }u) \text { . Let } \varepsilon \text { and } \delta \text { be as in Corollary } 27 \text { (property }} \\ { \text { of }\left.\mathbf{P}_{\varepsilon}\right) . \text { The extension } u \in H^{2}(\mathcal{N}(\delta)) \text { of } \widetilde{u} \text { of Proposition } 28 \text { satisfies the } P D E} \\ {\qquad \begin{aligned}-\frac{1}{\mu_{\varepsilon}} \operatorname{div}\left(\mu_{\varepsilon} \mathbf{B}_{\varepsilon} \nabla u\right)=f_{\varepsilon} & \text { in } \quad \mathcal{N}(\delta) \\-\frac{1}{\mu_{\varepsilon}} \operatorname{div}\left(\mu_{\varepsilon} \mathbf{B}_{\varepsilon}\right)^{-1} \Pi_{\varepsilon} \mathbf{A}_{\varepsilon} \Pi_{\varepsilon}\left(\mathbf{I}-d_{\varepsilon} D^{2} d_{\varepsilon}\right)^{-1} \\ \qquad \mu_{\varepsilon}:=\frac{1}{\widetilde{\mu}_{\varepsilon} \circ \mathbf{P}_{\varepsilon}} \operatorname{det}\left(\mathbf{I}-d_{\varepsilon} D^{2} d_{\varepsilon}\right) \\ \text {and } \widetilde{\mu}_{\varepsilon} \text { is defined in Lemma } 29 \end{aligned}}\end{array}  Proposition 30 (PDE satisfied by u) . Let ε and δ be as in Corollary 27 (property  of Pε). The extension uH2(N(δ)) of u  of Proposition 28 satisfies the PDEμε1div(μεBεu)=fεμε1div(μεBε)1ΠεAεΠε(IdεD2dε)1με:=μ εPε1det(IdεD2dε)and μ ε is defined in Lemma 29 in N(δ)
同样地,对于“基于 γ ε \gamma_\varepsilon γε法向的 γ \gamma γ的自然扩充” u u u f ε f_\varepsilon fε,在区域里面,有上述的一个PDE关系。这里所谓的“基于 γ ε \gamma_\varepsilon γε法向的 γ \gamma γ的自然扩充”的意思是,对于
u = u ~ ∘ Q ε ∘ P ε u=\widetilde{u} \circ \mathbf{Q}_{\varepsilon} \circ \mathbf{P}_{\varepsilon} u=u QεPε f ε : = f ~ ε ∘ P ε = f ~ ∘ Q ε ∘ P ε f_{\varepsilon}:=\widetilde{f}_{\varepsilon} \circ \mathbf{P}_{\varepsilon}=\widetilde{f} \circ \mathbf{Q}_{\varepsilon} \circ \mathbf{P}_{\varepsilon} fε:=f εPε=f QεPε
我们可以这样理解:做 γ ϵ \gamma_\epsilon γϵ的法向直线,交 γ \gamma γ于某一点,那么直线上任意点的 u u u f f f值都定义为他们在这个“某一点”上的 u ~ \tilde u u~ f ~ \tilde f f~值。即:
x ~ = x + s ∇ d ε ( x ) ⇒ u ( x ) = u ~ ( x ~ ) \widetilde{\mathbf{x}}=\mathbf{x}+s \nabla d_{\varepsilon}(\mathbf{x}) \quad \Rightarrow \quad {u}(\mathbf{x})=\tilde u(\widetilde{\mathbf{x}}) x =x+sdε(x)u(x)=u~(x ) x ~ = x + s ∇ d ε ( x ) ⇒ f ε ( x ) = f ~ ( x ~ ) \widetilde{\mathbf{x}}=\mathbf{x}+s \nabla d_{\varepsilon}(\mathbf{x}) \quad \Rightarrow \quad f_{\varepsilon}(\mathbf{x})=\widetilde{f}(\widetilde{\mathbf{x}}) x =x+sdε(x)fε(x)=f (x )
这些成立于最近点投影是唯一的条件下。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 点我我会动 设计师:上身试试 返回首页