曲面扰动理论之C2曲面的扰动

曲面扰动理论之C2曲面的扰动

依然假设邻域:
( 48 ) N = { x ∈ R n + 1 : ∣ d ( x ) ∣ < 1 2 K ∞ } (48) \quad \mathcal{N}=\left\{\mathrm{x} \in \mathbb{R}^{n+1}:|d(\mathrm{x})|<\frac{1}{2 K_{\infty}}\right\} (48)N={xRn+1:d(x)<2K1}
假设有曲面 Γ \Gamma Γ,它到 γ \gamma γ的最近点投影是个双射:
P d = I − d ∇ d : Γ → γ \mathbf{P}_{d}=\mathbf{I}-d \nabla d: \Gamma \rightarrow \gamma Pd=Idd:Γγ
v v v v ~ \tilde v v~的沿法向的自然扩充,即:
v = v ~ ∘ P d v=\tilde{v} \circ \mathbf{P}_{d} v=v~Pd
我们有如下引理,描述了两个曲面上函数梯度的关系:
 Lemma  20  (relation between tangential gradients). If  v ~ : γ → R  is of class  H 1  ,   then the tangential gradients  ∇ γ v ~  and  ∇ Γ v  satisfy for all  x ∈ Γ ( 49 ) ∇ Γ v ( x ) = Π Γ ( x ) ( I − d W ) ( x ) Π ( x ) ∇ γ v ~ ( P d ( x ) )  (50)  ∇ γ v ~ ( P d ( x ) ) = ( I − d W ) − 1 ( x ) ( I − ν Γ ( x ) ⊗ ν ( x ) ν Γ ( x ) ⋅ ν ( x ) ) ∇ Γ v ( x ) \begin{array}{l}{\text { Lemma } 20 \text { (relation between tangential gradients). If } \tilde{v}: \gamma \rightarrow \mathbb{R} \text { is of class } H^{1} \text { , }} \\ {\text { then the tangential gradients } \nabla_{\gamma} \tilde{v} \text { and } \nabla_{\Gamma} v \text { satisfy for all } \mathrm{x} \in \Gamma} \\ {(49) \quad \nabla_{\Gamma} v(\mathrm{x})=\Pi_{\Gamma}(\mathrm{x})(\mathrm{I}-d \mathbf{W})(\mathrm{x}) \Pi(\mathrm{x}) \nabla_{\gamma} \tilde{v}\left(\mathrm{P}_{d}(\mathrm{x})\right)} \\ {\begin{array}{llll}{\text { (50) }} & {\nabla_{\gamma} \tilde{v}\left(\mathbf{P}_{d}(\mathrm{x})\right)=} & {(\mathbf{I}-d \mathbf{W})^{-1}(\mathbf{x})\left(\mathbf{I}-\frac{\nu_{\Gamma}(\mathbf{x}) \otimes \nu(\mathbf{x})}{\nu_{\Gamma}(\mathbf{x}) \cdot \nu(\mathbf{x})}\right) \nabla_{\Gamma} v(\mathbf{x})}\end{array}}\end{array}  Lemma 20 (relation between tangential gradients). If v~:γR is of class H1 ,  then the tangential gradients γv~ and Γv satisfy for all xΓ(49)Γv(x)=ΠΓ(x)(IdW)(x)Π(x)γv~(Pd(x)) (50) γv~(Pd(x))=(IdW)1(x)(IνΓ(x)ν(x)νΓ(x)ν(x))Γv(x)
证明:
由曲面梯度的第二定义以及式(27)所描述的曲面外一点的梯度和投影点曲面梯度关系,我们立马可以得到:
∇ Γ v ( x ) = Π Γ ( x ) ∇ v ( x ) = Π Γ ( x ) ( I − d W ) ( x ) Π ( x ) ∇ γ v ~ ( P d ( x ) ) \nabla_{\Gamma} v(\mathrm{x})=\Pi_{\Gamma}(\mathrm{x}) \nabla v(\mathrm{x})=\Pi_{\Gamma}(\mathrm{x})(\mathrm{I}-d \mathrm{W})(\mathrm{x}) \Pi(\mathrm{x}) \nabla_{\gamma} \tilde{v}\left(\mathrm{P}_{d}(\mathrm{x})\right) Γv(x)=ΠΓ(x)v(x)=ΠΓ(x)(IdW)(x)Π(x)γv~(Pd(x))
第一个结论得证。
为了证明第二个结论,我们必须找出 ∇ v \nabla v v ∇ Γ v \nabla_{\Gamma} v Γv的一个关系。
首先,有两个式子:
∇ v = ( I − ν Γ ⊗ ν Γ ) ∇ v + ν Γ ⊗ ν Γ ∇ v = ∇ Γ v + ( ∇ v ⋅ ν Γ ) ν Γ \nabla v=\left(\mathbf{I}-\nu_{\Gamma} \otimes \nu_{\Gamma}\right) \nabla v+\nu_{\Gamma} \otimes \nu_{\Gamma} \nabla v=\nabla_{\Gamma} v+\left(\nabla v \cdot \nu_{\Gamma}\right) \nu_{\Gamma} v=(IνΓνΓ)v+νΓνΓv=Γv+(vνΓ)νΓ
∇ Γ v ⋅ ν + ( ν Γ ⋅ ν ) ∇ v ⋅ ν Γ = 0 ⇒ ∇ v ⋅ ν Γ = − 1 ν Γ ⋅ ν ∇ Γ v ⋅ ν \nabla_{\Gamma} v \cdot \nu+\left(\nu_{\Gamma} \cdot \nu\right) \nabla v \cdot \nu_{\Gamma}=0 \quad \Rightarrow \quad \nabla v \cdot \nu_{\Gamma}=-\frac{1}{\nu_{\Gamma} \cdot \nu} \nabla_{\Gamma} v \cdot \nu Γvν+(νΓν)vνΓ=0vνΓ=νΓν1Γvν
第二个式子是因为 ∇ v ( x ) ⋅ ν ( x ) = 0 \nabla v(\mathbf{x}) \cdot \boldsymbol{\nu}(\mathbf{x})=0 v(x)ν(x)=0
整合两个式子,得到:
∇ v ( x ) = ( I − ν Γ ( x ) ⊗ ν ( x ) ν Γ ( x ) ⋅ ν ( x ) ) ∇ Γ v ( x ) ∀ x ∈ Γ \nabla v(\mathrm{x})=\left(\mathbf{I}-\frac{\nu_{\Gamma}(\mathrm{x}) \otimes \nu(\mathrm{x})}{\nu_{\Gamma}(\mathrm{x}) \cdot \nu(\mathrm{x})}\right) \nabla_{\Gamma} v(\mathrm{x}) \quad \forall \mathrm{x} \in \Gamma v(x)=(IνΓ(x)ν(x)νΓ(x)ν(x))Γv(x)xΓ
代入到 ∇ v \nabla v v ∇ γ v \nabla_{\gamma} v γv的关系,立证。

 Lemma  21  (geometric consistency). The error matrices  E , E Γ ∈ R ( n + 1 ) × ( n + 1 )  in   (34) are given on  Γ  by   (51)  E ∘ P d : = q Γ q Π ( I − d W ) Π Γ ( I − d W ) Π − Π  (52)  E Γ : = q q Γ ( I − ν ⊗ ν Γ ν ⋅ ν Γ ) ( I − d W ) − 2 ( I − ν Γ ⊗ ν ν ⋅ ν Γ ) − Π Γ \begin{array}{l}{\text { Lemma } 21 \text { (geometric consistency). The error matrices } \mathbf{E}, \mathbf{E}_{\Gamma} \in \mathbb{R}^{(n+1) \times(n+1)} \text { in }} \\ {\begin{array}{ll}{\text { (34) are given on } \Gamma} & {\text { by }} \\ {\text { (51) }} & {\mathbf{E} \circ \mathbf{P}_{d}:=\frac{q_{\Gamma}}{q} \Pi(\mathbf{I}-d \mathbf{W}) \Pi_{\Gamma}(\mathbf{I}-d \mathbf{W}) \Pi-\Pi} \\ {\text { (52) }} & {\mathbf{E}_{\Gamma}:=\frac{q}{q_{\Gamma}}\left(I-\frac{\nu \otimes \nu_{\Gamma}}{\nu \cdot \nu_{\Gamma}}\right)(\mathbf{I}-d \mathbf{W})^{-2}\left(I-\frac{\nu_{\Gamma} \otimes \nu}{\nu \cdot \nu_{\Gamma}}\right)-\Pi_{\Gamma}}\end{array}}\end{array}  Lemma 21 (geometric consistency). The error matrices E,EΓR(n+1)×(n+1) in  (34) are given on Γ (51)  (52)  by EPd:=qqΓΠ(IdW)ΠΓ(IdW)ΠΠEΓ:=qΓq(IννΓννΓ)(IdW)2(IννΓνΓν)ΠΓ
证明:
由上面一个引理,立马得到:
∫ Γ ∇ Γ w ⋅ ∇ Γ v = ∫ γ ∇ γ w ~ ⋅ ( q Γ q Π ( I − d W ) Π Γ ( I − d W ) Π ) ∇ γ v ~ \int_{\Gamma} \nabla_{\Gamma} w \cdot \nabla_{\Gamma} v=\int_{\gamma} \nabla_{\gamma} \widetilde{w} \cdot\left(\frac{q_{\Gamma}}{q} \Pi(\mathbf{I}-d \mathbf{W}) \Pi_{\Gamma}(\mathbf{I}-d \mathbf{W}) \Pi\right) \nabla_{\gamma} \widetilde{v} ΓΓwΓv=γγw (qqΓΠ(IdW)ΠΓ(IdW)Π)γv
另一个类似可证。

 Lemma  22  (relation between  q  and  q Γ ) .  Given any parametrization  χ Γ  of  Γ ,  let  χ : = P d ∘ χ Γ  be the parametrization of  γ .  If  ν ( x ) ⋅ ν Γ ( x ) ≥ 0  for all  x ∈ Γ ,  then   the ratio of area elements  q ( y ) / q Γ ( y )  with  y = χ Γ − 1 ( x )  satisfies   (53)  q ( y ) q Γ ( y ) = det ⁡ ( I − d ( x ) W ( x ) ) ( ν ( x ) ⋅ ν Γ ( x ) ) ∀ x ∈ Γ \begin{array}{l}{ \text { Lemma }\left.22 \text { (relation between } q \text { and } q_{\Gamma}\right) . \text { Given any parametrization } \chi_{\Gamma} \text { of } \Gamma, \text { let }} \\ {\chi:=\mathbf{P}_{d} \circ \chi_{\Gamma} \text { be the parametrization of } \gamma . \text { If } \nu(\mathrm{x}) \cdot \nu_{\Gamma}(\mathrm{x}) \geq 0 \text { for all } \mathrm{x} \in \Gamma, \text { then }} \\ {\text { the ratio of area elements } q(\mathrm{y}) / q_{\Gamma}(\mathrm{y}) \text { with } \mathrm{y}=\chi_{\Gamma}^{-1}(\mathrm{x}) \text { satisfies }} \\ {\begin{array}{llll}{\text { (53) }} & {\frac{q(\mathrm{y})}{q_{\Gamma}(\mathrm{y})}=\operatorname{det}(\mathrm{I}-d(\mathrm{x}) \mathrm{W}(\mathrm{x}))\left(\nu(\mathrm{x}) \cdot \nu_{\Gamma}(\mathrm{x})\right)} & {\forall \mathrm{x} \in \Gamma}\end{array}}\end{array}  Lemma 22 (relation between q and qΓ). Given any parametrization χΓ of Γ, let χ:=PdχΓ be the parametrization of γ. If ν(x)νΓ(x)0 for all xΓ, then  the ratio of area elements q(y)/qΓ(y) with y=χΓ1(x) satisfies  (53) qΓ(y)q(y)=det(Id(x)W(x))(ν(x)νΓ(x))xΓ
证明:
由(5)式,我们有:
q q Γ = det ⁡ ( [ ν , D χ ] [ ν Γ , D χ Γ ] − 1 ) \frac{q}{q_{\Gamma}}=\operatorname{det}\left([\nu, D \chi]\left[\nu_{\Gamma}, D \chi_{\Gamma}\right]^{-1}\right) qΓq=det([ν,Dχ][νΓ,DχΓ]1)
我们假设有:
[ ν Γ , D χ Γ ] − 1 = [ v , A ] t \left[\nu_{\Gamma}, D \chi_{\Gamma}\right]^{-1}=[\mathbf{v}, \mathbf{A}]^{t} [νΓ,DχΓ]1=[v,A]t
那么由 [ v , A ] t [ ν Γ , D χ Γ ] = I [\mathbf{v}, \mathbf{A}]^{t}\left[\boldsymbol{\nu}_{\Gamma}, D \chi_{\Gamma}\right]=\mathbf{I} [v,A]t[νΓ,DχΓ]=I [ ν Γ , D χ Γ ] [ v , A ] t = I \left[\nu_{\Gamma}, D \chi_{\Gamma}\right][\mathbf{v}, \mathbf{A}]^{t}=\mathbf{I} [νΓ,DχΓ][v,A]t=I,我们有:
v = ν Γ \mathbf{v}=\nu_{\Gamma} v=νΓ
D χ Γ A t = I − ν Γ ⊗ ν Γ = Π Γ D \chi_{\Gamma} \mathbf{A}^{t}=\mathbf{I}-\nu_{\Gamma} \otimes \nu_{\Gamma}=\Pi_{\Gamma} DχΓAt=IνΓνΓ=ΠΓ
[ ν , D χ ] [ ν Γ , D χ Γ ] − 1 = ν ⊗ ν Γ + D χ A t [\nu, D \chi]\left[\nu_{\Gamma}, D \chi_{\Gamma}\right]^{-1}=\nu \otimes \nu_{\Gamma}+D \chi \mathbf{A}^{t} [ν,Dχ][νΓ,DχΓ]1=ννΓ+DχAt
x = χ Γ ( y ) ∈ Γ \mathbf{x}=\chi_{\Gamma}(\mathbf{y}) \in \Gamma x=χΓ(y)Γ以及 χ ( y ) = P d ( x ) = x − d ( x ) ∇ d ( x ) ∈ γ \chi(\mathrm{y})=\mathrm{P}_{d}(\mathrm{x})=\mathrm{x}-d(\mathrm{x}) \nabla d(\mathrm{x}) \in \gamma χ(y)=Pd(x)=xd(x)d(x)γ,使用链式法则,有:
D χ ( y ) = ( I − d ( x ) W ( x ) ) Π ( x ) D χ Γ ( y ) ∀ y ∈ V D \chi(\mathbf{y})=(\mathbf{I}-d(\mathbf{x}) \mathbf{W}(\mathbf{x})) \Pi(\mathbf{x}) D \chi_{\Gamma}(\mathbf{y}) \quad \forall \mathbf{y} \in \mathcal{V} Dχ(y)=(Id(x)W(x))Π(x)DχΓ(y)yV
进而,我们有:
q q Γ = det ⁡ ( ν ⊗ ν Γ + ( I − d W ) Π Π Γ ) = det ⁡ ( ( I − d W ) ( ν ⊗ ν Γ + Π Π Γ ) ) = det ⁡ ( ( I − d W ) ) det ⁡ B \begin{aligned} \frac{q}{q_{\Gamma}} &=\operatorname{det}\left(\nu \otimes \nu_{\Gamma}+(\mathbf{I}-d \mathbf{W}) \Pi \Pi_{\Gamma}\right) \\ &=\operatorname{det}\left((\mathbf{I}-d \mathbf{W})\left(\nu \otimes \nu_{\Gamma}+\Pi \Pi_{\Gamma}\right)\right)=\operatorname{det}((\mathbf{I}-d \mathbf{W})) \operatorname{det} \mathbf{B} \end{aligned} qΓq=det(ννΓ+(IdW)ΠΠΓ)=det((IdW)(ννΓ+ΠΠΓ))=det((IdW))detB
此处 B : = ν ⊗ ν Γ + Π Π Γ \mathbf{B}:=\boldsymbol{\nu} \otimes \boldsymbol{\nu}_{\Gamma}+\Pi \Pi_{\Gamma} B:=ννΓ+ΠΠΓ。这里第二个等号用到了 W ν = 0 \mathbf{W} \nu=0 Wν=0。至此,我们只需要证明 det ⁡ B = ν ⋅ ν Γ \operatorname{det} \mathbf{B}=\nu \cdot \nu_{\Gamma} detB=ννΓ
如果 ν = ν Γ \nu=\nu_{\Gamma} ν=νΓ,结论显然。故我们假设二者是相互独立的。能展成一个空间 X = span ⁡ { ν , ν Γ } \mathbb{X}=\operatorname{span}\left\{\boldsymbol{\nu},\boldsymbol{\nu}_{\Gamma}\right\} X=span{ν,νΓ},有一对正交基 ν \nu ν e e e
我们考虑旋转算子 R ∈ R ( n + 1 ) × ( n + 1 ) \mathbf{R} \in \mathbb{R}^{(n+1) \times(n+1)} RR(n+1)×(n+1),使得:
R ν = ν Γ = cos ⁡ θ ν + sin ⁡ θ e , R e = − sin ⁡ θ ν + cos ⁡ θ e \mathbf{R} \nu=\nu_{\Gamma}=\cos \theta \nu+\sin \theta \mathbf{e}, \quad \mathbf{R e}=-\sin \theta \nu+\cos \theta \mathbf{e} Rν=νΓ=cosθν+sinθe,Re=sinθν+cosθe
那么,我们最终有:
B = ( ν ⊗ ν + Π R Π ) R t ⇒ det ⁡ B = det ⁡ ( ν ⊗ ν + Π R Π ) \mathbf{B}=(\nu \otimes \nu+\Pi \mathbf{R} \Pi) \mathbf{R}^{t} \Rightarrow \operatorname{det} \mathbf{B}=\operatorname{det}(\nu \otimes \nu+\Pi \mathbf{R} \Pi) B=(νν+ΠRΠ)RtdetB=det(νν+ΠRΠ)
进一步,因为 cos ⁡ θ = ν ⋅ ν Γ \cos \theta=\nu \cdot \nu_{\Gamma} cosθ=ννΓ,且 B \mathbf{B} B对应的特征值为1(特征向量 ν \nu ν)、 c o s ( θ ) cos(\theta) cos(θ)(特征向量 e \mathbf{e} e)和1(特征向量在垂空间中)。证毕。

我们定义一些几何量:
( 54 ) d ∞ : = ∥ d ∥ L ∞ ( Γ ) , ν ∞ : = ∥ ν − ν Γ ∥ L ∞ ( Γ ) , K ∞ : = ∥ K ∥ L ∞ ( γ ) (54) \quad d_{\infty}:=\|d\|_{L_{\infty}(\Gamma)}, \quad \nu_{\infty}:=\left\|\nu-\nu_{\Gamma}\right\|_{L_{\infty}(\Gamma)}, \quad K_{\infty}:=\|K\|_{L_{\infty}(\gamma)} (54)d:=dL(Γ),ν:=ννΓL(Γ),K:=KL(γ)
我们有如下引理:
 Lemma  23  (perturbation error estimate for  C 2  surfaces). Let  u  solve (Ig) and  u Γ  solve  ( 33 )  with  Γ ⊂ N  . Let  χ Γ  and  χ : = P d ∘ χ Γ  be the parametrizations of  Γ  and  γ  that give rise to the area elements  q Γ  and  q .  If the normal vectors satisfy  ν ⋅ ν Γ ≥ c > 0 ,  then   (55)  ∥ ∇ γ ( u − u Γ ) ∥ L 2 ( γ ) ≲ ( d ∞ K ∞ + ν ∞ 2 ) ∥ f Γ ∥ H # − 1 ( Γ ) + ∥ f q q Γ − 1 − f Γ ∥ H # − 1 ( Γ ) \begin{array}{l}{\text { Lemma } 23 \text { (perturbation error estimate for } C^{2} \text { surfaces). Let } u \text { solve (Ig) and }} \\ {u_{\Gamma} \text { solve }(33) \text { with } \Gamma \subset \mathcal{N} \text { . Let } \chi_{\Gamma} \text { and } \chi:=\mathbf{P}_{d} \circ \chi_{\Gamma} \text { be the parametrizations of }} \\ {\Gamma \text { and } \gamma \text { that give rise to the area elements } q_{\Gamma} \text { and } q . \text { If the normal vectors satisfy }} \\ {\nu \cdot \nu_{\Gamma} \geq c>0, \text { then }} \\ {\begin{array}{llll}{\text { (55) }} & {\left\|\nabla_{\gamma}\left(u-u_{\Gamma}\right)\right\|_{L_{2}(\gamma)}} & {\lesssim\left(d_{\infty} K_{\infty}+\nu_{\infty}^{2}\right)\left\|f_{\Gamma}\right\|_{H_{\#}^{-1}(\Gamma)}+\left\|f q q_{\Gamma}^{-1}-f_{\Gamma}\right\|_{H_{\#}^{-1}(\Gamma)}}\end{array}}\end{array}  Lemma 23 (perturbation error estimate for C2 surfaces). Let u solve (Ig) and uΓ solve (33) with ΓN . Let χΓ and χ:=PdχΓ be the parametrizations of Γ and γ that give rise to the area elements qΓ and q. If the normal vectors satisfy ννΓc>0, then  (55) γ(uuΓ)L2(γ)(dK+ν2)fΓH#1(Γ)+fqqΓ1fΓH#1(Γ)
证明:
和引理19相似地证明,Step 1和Step 3是完全一样的。只要估计几何误差矩阵。如果我们证明了:
 (56)  ∥ E ∥ L ∞ ( γ ) ≲ ν ∞ 2 + d ∞ K ∞ \text { (56) } \quad\|\mathbf{E}\|_{L_{\infty}(\gamma)} \lesssim \nu_{\infty}^{2}+d_{\infty} K_{\infty}  (56) EL(γ)ν2+dK
结论立明。我们首先写 E ∘ P d = I 1 + I 2 + I 3 \mathbf{E} \circ \mathbf{P}_{d}=\mathbf{I}_{1}+\mathbf{I}_{2}+\mathbf{I}_{3} EPd=I1+I2+I3,其中:
I 1 : = ( q Γ q − 1 ) Π ( I − d W ) Π Γ ( I − d W ) Π I 2 : = ( Π ( I − d W ) Π Γ ( I − d W ) Π − Π Π Γ Π ) I 3 : = ( Π Π Γ Π − Π ) \begin{array}{l}{\mathbf{I}_{1}:=\left(\frac{q_{\Gamma}}{q}-1\right) \Pi(\mathbf{I}-d \mathbf{W}) \Pi_{\Gamma}(\mathbf{I}-d \mathbf{W}) \Pi} \\ {\mathbf{I}_{2}:=\left(\Pi(\mathbf{I}-d \mathbf{W}) \Pi_{\Gamma}(\mathbf{I}-d \mathbf{W}) \Pi-\Pi \Pi_{\Gamma} \Pi\right)} \\ {\mathbf{I}_{3}:=\left(\Pi \Pi_{\Gamma} \Pi-\Pi\right)}\end{array} I1:=(qqΓ1)Π(IdW)ΠΓ(IdW)ΠI2:=(Π(IdW)ΠΓ(IdW)ΠΠΠΓΠ)I3:=(ΠΠΓΠΠ)
由面积元之间的关系,我们有:
q ( y ) q Γ ( y ) − 1 = ( ( ν ( x ) ⋅ ν Γ ( x ) − 1 ) ∏ i = 1 n ( 1 − d ( x ) κ i ( x ) ) ) + ( ∏ i = 1 n ( 1 − d ( x ) κ i ( x ) ) − 1 ) \frac{q(\mathbf{y})}{q_{\Gamma}(\mathbf{y})}-1=\left(\left(\nu(\mathbf{x}) \cdot \nu_{\Gamma}(\mathbf{x})-1\right) \prod_{i=1}^{n}\left(1-d(\mathbf{x}) \kappa_{i}(\mathbf{x})\right)\right)+\left(\prod_{i=1}^{n}\left(1-d(\mathbf{x}) \kappa_{i}(\mathbf{x})\right)-1\right) qΓ(y)q(y)1=((ν(x)νΓ(x)1)i=1n(1d(x)κi(x)))+(i=1n(1d(x)κi(x))1)
既然 1 − ν ⋅ ν Γ = 1 2 ∣ ν − ν Γ ∣ 2 ≤ 1 2 ν ∞ 2 1-\nu \cdot \nu_{\Gamma}=\frac{1}{2}\left|\nu-\nu_{\Gamma}\right|^{2} \leq \frac{1}{2} \nu_{\infty}^{2} 1ννΓ=21ννΓ221ν2,我们可到:
( 57 ) ∣ q ( y ) q Γ ( y ) − 1 ∣ ≲ ν ∞ 2 + d ∞ K ∞ ∀ y ∈ V (57) \quad\left|\frac{q(\mathbf{y})}{q_{\Gamma}(\mathbf{y})}-1\right| \lesssim \nu_{\infty}^{2}+d_{\infty} K_{\infty} \quad \forall \mathbf{y} \in \mathcal{V} (57)qΓ(y)q(y)1ν2+dKyV
q Γ q \frac{q_{\Gamma}}{q} qqΓ的界根据 ν ⋅ ν Γ ≥ c > 0 \boldsymbol{\nu} \cdot \boldsymbol{\nu}_{\Gamma} \geq c>0 ννΓc>0类似可以得到。
对于第二部分:
I 2 = − Π Π Γ d W Π − Π d W Π Γ Π + Π d W Π Γ d W Π \mathbf{I}_{2}=-\Pi \Pi_{\Gamma} d \mathbf{W} \Pi-\Pi d \mathbf{W} \Pi_{\Gamma} \Pi+\Pi d \mathbf{W} \Pi_{\Gamma} d \mathbf{W} \Pi I2=ΠΠΓdWΠΠdWΠΓΠ+ΠdWΠΓdWΠ
容易有, ∥ I 2 ∥ L ∞ ( γ ) ≲ d ∞ K ∞ \left\|\mathbf{I}_{2}\right\|_{L_{\infty}(\gamma)} \lesssim d_{\infty} K_{\infty} I2L(γ)dK
对于第三部分,可写成:
I 3 = − Π ν Γ ⊗ Π ν Γ = − ( ν Γ − ( ν ⋅ ν Γ ) ν ) ⊗ ( ν Γ − ( ν ⋅ ν Γ ) ν ) \mathbf{I}_{3}=-\Pi \nu_{\Gamma} \otimes \Pi \nu_{\Gamma}=-\left(\nu_{\Gamma}-\left(\nu \cdot \nu_{\Gamma}\right) \nu\right) \otimes\left(\nu_{\Gamma}-\left(\nu \cdot \nu_{\Gamma}\right) \nu\right) I3=ΠνΓΠνΓ=(νΓ(ννΓ)ν)(νΓ(ννΓ)ν)
因为 ν Γ − ( ν ⋅ ν Γ ) ν = ( ν Γ − ν ) + ( 1 − ν ⋅ ν Γ ) ν \nu_{\Gamma}-\left(\nu \cdot \nu_{\Gamma}\right) \nu=\left(\nu_{\Gamma}-\nu\right)+\left(1-\nu \cdot \nu_{\Gamma}\right) \nu νΓ(ννΓ)ν=(νΓν)+(1ννΓ)ν,我们推断 ∥ I 3 ∥ L ∞ ( γ ) ≲ ν ∞ 2 \left\|\mathbf{I}_{3}\right\|_{L_{\infty}(\gamma)} \lesssim \nu_{\infty}^{2} I3L(γ)ν2。立证结论。

下面使用 λ ∞ \lambda_\infty λ给出 v ∞ v_\infty v的估计。有如下引理:
 Lemma  24  (error estimate for normals). The errors  ν ∞  and  λ ∞  defined in  ( 54 )  and  ( 39 )  satisfy   (58)  ν ∞ ≲ λ ∞  where the hidden constant depends on  S χ  defined in  ( 38 ) \begin{array}{l}{\text { Lemma } 24 \text { (error estimate for normals). The errors } \nu_{\infty} \text { and } \lambda_{\infty} \text { defined in }(54)} \\ {\text { and }(39) \text { satisfy }} \\ {\begin{array}{ll}{\text { (58) }} & {\nu_{\infty} \lesssim \lambda_{\infty}} \\ {\text { where the hidden constant depends on } S_{\chi} \text { defined in }(38)}\end{array}}\end{array}  Lemma 24 (error estimate for normals). The errors ν and λ defined in (54) and (39) satisfy  (58)  where the hidden constant depends on Sχ defined in (38)νλ
证明:
由定义,我们有:
ν − ν Γ = N − N Γ ∣ N ∣ + ∣ N Γ ∣ − ∣ N ∣ ∣ N ∣ N Γ ∣ N Γ ∣ ⇒ ∣ ν − ν Γ ∣ ≤ 2 ∣ N − N Γ ∣ ∣ N ∣ \nu-\nu_{\Gamma}=\frac{N-N_{\Gamma}}{|N|}+\frac{\left|N_{\Gamma}\right|-|N|}{|N|} \frac{N_{\Gamma}}{\left|N_{\Gamma}\right|} \Rightarrow\left|\nu-\nu_{\Gamma}\right| \leq 2 \frac{\left|N-N_{\Gamma}\right|}{|N|} ννΓ=NNNΓ+NNΓNNΓNΓννΓ2NNNΓ
因为 N = ∑ i = 1 n + 1 det ⁡ ( [ e i , D χ ] ) e i \mathbf{N}=\sum_{i=1}^{n+1} \operatorname{det}\left(\left[\mathbf{e}_{i}, D \chi\right]\right) \mathbf{e}_{i} N=i=1n+1det([ei,Dχ])ei det ⁡ ( [ e i , D X ] ) − det ⁡ ( [ e i , D X Γ ] ) \operatorname{det}\left(\left[\mathbf{e}_{i}, D_{\mathcal{X}}\right]\right)-\operatorname{det}\left(\left[\mathbf{e}_{i}, D_{\mathcal{X}_{\Gamma}}\right]\right) det([ei,DX])det([ei,DXΓ])是众多 ∂ j ( χ − χ Γ ) ⋅ e k \partial_{j}\left(\chi-\chi_{\Gamma}\right) \cdot \mathbf{e}_{k} j(χχΓ)ek和n-1个因子 ∂ ℓ χ m \partial \ell \chi_{m} χm乘积的西格玛和,我们有:
∣ det ⁡ ( [ e i , D χ ] ) − det ⁡ ( [ e i , D χ Γ ] ) ∣ ≲ ∣ D ( χ − χ Γ ) ∣ ∣ D χ ∣ n − 1 \left|\operatorname{det}\left(\left[\mathbf{e}_{i}, D \chi\right]\right)-\operatorname{det}\left(\left[\mathbf{e}_{i}, D \chi_{\Gamma}\right]\right)\right| \lesssim\left|D\left(\chi-\chi_{\Gamma}\right)\right||D \chi|^{n-1} det([ei,Dχ])det([ei,DχΓ])D(χχΓ)Dχn1
再诉诸于 ∣ N ∣ = q |\mathbf{N}|=q N=q以及引理16证明中得到的 q ≈ ∣ D χ ∣ n q \approx|D \chi|^{n} qDχn,立得结论。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 点我我会动 设计师:上身试试 返回首页