曲面扰动理论之C1曲面的扰动
定义曲面
χ
Γ
\chi_\Gamma
χΓ,定义
u
Γ
∈
H
#
1
(
Γ
)
u_{\Gamma} \in H_{\#}^{1}(\Gamma)
uΓ∈H#1(Γ),它是如下弱形式的解:
(
33
)
∫
Γ
∇
Γ
u
Γ
⋅
∇
Γ
v
=
∫
Γ
f
Γ
v
∀
v
∈
H
#
1
(
Γ
)
(33) \quad \int_{\Gamma} \nabla_{\Gamma} u_{\Gamma} \cdot \nabla_{\Gamma} v=\int_{\Gamma} f_{\Gamma} v \quad \forall v \in H_{\#}^{1}(\Gamma)
(33)∫Γ∇ΓuΓ⋅∇Γv=∫ΓfΓv∀v∈H#1(Γ)
定义误差矩阵
E
,
E
Γ
∈
R
(
n
+
1
)
×
(
n
+
1
)
\mathbf{E}, \mathbf{E}_{\Gamma} \in \mathbb{R}^{(n+1) \times(n+1)}
E,EΓ∈R(n+1)×(n+1),
(
34
)
∫
Γ
∇
Γ
v
⋅
∇
Γ
w
−
∫
γ
∇
γ
v
~
⋅
∇
γ
w
~
=
∫
γ
∇
γ
v
~
⋅
E
∇
γ
w
~
=
∫
Γ
∇
Γ
v
⋅
E
Γ
∇
Γ
w
(34) \quad \int_{\Gamma} \nabla_{\Gamma} v \cdot \nabla_{\Gamma} w-\int_{\gamma} \nabla_{\gamma} \widetilde{v} \cdot \nabla_{\gamma} \widetilde{w}=\int_{\gamma} \nabla_{\gamma} \widetilde{v} \cdot \mathbf{E} \nabla_{\gamma} \widetilde{w}=\int_{\Gamma} \nabla_{\Gamma} v \cdot \mathbf{E}_{\Gamma} \nabla_{\Gamma} w
(34)∫Γ∇Γv⋅∇Γw−∫γ∇γv
⋅∇γw
=∫γ∇γv
⋅E∇γw
=∫Γ∇Γv⋅EΓ∇Γw
对于所有的
v
,
w
∈
H
1
(
Γ
)
v, w \in H^{1}(\Gamma)
v,w∈H1(Γ)和所有的lift
v
~
,
w
~
∈
H
1
(
γ
)
\widetilde{v}, \widetilde{w} \in H^{1}(\gamma)
v
,w
∈H1(γ)都成立。所谓的lift,指的是定义曲线
Γ
\Gamma
Γ上的函数值
v
v
v,它和
γ
\gamma
γ上的函数
v
~
\tilde{v}
v~满足如下的关系,
v
=
v
~
∘
χ
∘
χ
Γ
−
1
v=\tilde{v} \circ \chi \circ \chi_{\Gamma}^{-1}
v=v~∘χ∘χΓ−1
对于不同正则性的曲面,我们有不同的对于 E \mathbf{E} E和 E Γ \mathbf{E_\Gamma} EΓ的估计。
C1曲面的扰动
首先,我们
那么我们有如下的引理,
Lemma
14
(relation between tangential gradients). If
v
~
:
γ
→
R
is of class
H
1
,
then the tangential gradients
∇
γ
v
~
and
∇
Γ
v
satisfy
(35)
∇
Γ
v
=
D
χ
Γ
g
Γ
−
1
D
χ
t
∇
γ
v
~
,
∇
γ
v
~
=
D
χ
g
−
1
D
χ
Γ
t
∇
Γ
v
\begin{array}{l}{\text { Lemma } 14 \text { (relation between tangential gradients). If } \tilde{v} : \gamma \rightarrow \mathbb{R} \text { is of class } H^{1} \text { , }} \\ {\text { then the tangential gradients } \nabla_{\gamma} \widetilde{v} \text { and } \nabla_{\Gamma} v \text { satisfy }} \\ {\begin{array}{llll}{\text { (35) }} & {\nabla_{\Gamma} v=D \chi_{\Gamma} \mathbf{g}_{\Gamma}^{-1} D \chi^{t} \nabla_{\gamma} \widetilde{v},} & {\nabla_{\gamma} \widetilde{v}=D \chi \mathbf{g}^{-1} D \chi_{\Gamma}^{t} \nabla_{\Gamma} v}\end{array}}\end{array}
Lemma 14 (relation between tangential gradients). If v~:γ→R is of class H1 , then the tangential gradients ∇γv
and ∇Γv satisfy (35) ∇Γv=DχΓgΓ−1Dχt∇γv
,∇γv
=Dχg−1DχΓt∇Γv
证明:
由曲面梯度的第一个定义,
∇
Γ
v
=
D
χ
Γ
g
Γ
−
1
∇
(
v
∘
χ
Γ
)
=
D
χ
Γ
g
Γ
−
1
∇
(
v
~
∘
χ
)
=
D
χ
Γ
g
Γ
−
1
D
χ
t
∇
γ
v
~
\nabla_{\Gamma} v=D \chi_{\Gamma} \mathrm{g}_{\Gamma}^{-1} \nabla\left(v \circ \chi_{\Gamma}\right)=D \chi_{\Gamma} \mathrm{g}_{\Gamma}^{-1} \nabla(\tilde{v} \circ \chi)=D \chi_{\Gamma} \mathrm{g}_{\Gamma}^{-1} D \chi^{t} \nabla_{\gamma} \tilde{v}
∇Γv=DχΓgΓ−1∇(v∘χΓ)=DχΓgΓ−1∇(v~∘χ)=DχΓgΓ−1Dχt∇γv~
因为
C
1
C^1
C1在
H
1
H^1
H1是稠密的,得证。第二个证明类似。
Lemma
15
(geometric consistency). The error matrices
E
and
E
Γ
read on
V
(36)
E
=
D
χ
(
q
Γ
q
g
Γ
−
1
−
g
−
1
)
D
χ
t
(37)
E
Γ
=
D
χ
Γ
(
g
Γ
−
1
−
q
q
Γ
g
−
1
)
D
χ
Γ
t
\begin{array}{l}{\text { Lemma } 15 \text { (geometric consistency). The error matrices } \mathrm{E} \text { and } \mathrm{E}_{\Gamma} \text { read on } \mathcal{V}} \\ {\text { (36) } \quad \mathrm{E}=D \chi\left(\frac{q_{\Gamma}}{q} \mathrm{g}_{\Gamma}^{-1}-\mathrm{g}^{-1}\right) D \chi^{t}} \\ {\text { (37) } \quad \mathrm{E}_{\Gamma}=D \chi_{\Gamma}\left(\mathrm{g}_{\Gamma}^{-1}-\frac{q}{q_{\Gamma}} \mathrm{g}^{-1}\right) D \chi_{\Gamma}^{t}}\end{array}
Lemma 15 (geometric consistency). The error matrices E and EΓ read on V (36) E=Dχ(qqΓgΓ−1−g−1)Dχt (37) EΓ=DχΓ(gΓ−1−qΓqg−1)DχΓt
证明:
使用(35),以及投影算子的参数化定义,我们立得:
∫
Γ
∇
Γ
v
⋅
∇
Γ
w
=
∫
γ
∇
γ
v
~
⋅
q
Γ
q
(
D
χ
g
Γ
−
1
D
χ
t
)
∇
γ
w
~
\int_{\Gamma} \nabla_{\Gamma} v \cdot \nabla_{\Gamma} w=\int_{\gamma} \nabla_{\gamma} \widetilde{v} \cdot \frac{q_{\Gamma}}{q}\left(D \chi \mathbf{g}_{\Gamma}^{-1} D \chi^{t}\right) \nabla_{\gamma} \widetilde{w}
∫Γ∇Γv⋅∇Γw=∫γ∇γv
⋅qqΓ(DχgΓ−1Dχt)∇γw
下面,我们定义两个重要的常量,用
∣
D
χ
(
y
)
∣
|D \chi(\mathrm{y})|
∣Dχ(y)∣和
∣
D
−
χ
(
y
)
∣
\left|D^{-} \chi(\mathrm{y})\right|
∣D−χ(y)∣来表示
D
χ
(
y
)
D \chi(\mathbf{y})
Dχ(y)最大奇异值和最小奇异值。
定义稳定化常数如下,
(38)
S
χ
:
=
sup
y
∈
V
max
{
∣
D
χ
(
y
)
∣
,
∣
D
χ
Γ
(
y
)
∣
}
min
{
∣
D
−
χ
(
y
)
∣
,
∣
D
−
χ
Γ
(
y
)
∣
}
\begin{array}{ll}{\text { (38) }} & {S_{\chi} :=\sup _{\mathbf{y} \in \mathcal{V}} \frac{\max \left\{|D \chi(y)|,\left|D \chi_{\Gamma}(y)\right|\right\}}{\min \left\{\left|D^{-} \chi(y)\right|,\left|D^{-} \chi_{\Gamma}(y)\right|\right\}}}\end{array}
(38) Sχ:=supy∈Vmin{∣D−χ(y)∣,∣D−χΓ(y)∣}max{∣Dχ(y)∣,∣DχΓ(y)∣}
定义几何精度的相对度量如下,
(
39
)
λ
∞
:
=
sup
y
∈
V
∣
D
(
χ
−
χ
Γ
)
(
y
)
∣
min
{
∣
D
−
χ
(
y
)
∣
,
∣
D
−
χ
Γ
(
y
)
∣
}
(39) \quad \lambda_{\infty} :=\sup _{\mathbf{y} \in \mathcal{V}} \frac{\left|D\left(\chi-\chi_{\Gamma}\right)(\mathbf{y})\right|}{\min \left\{\left|D^{-} \chi(\mathbf{y})\right|,\left|D^{-} \chi_{\Gamma}(\mathbf{y})\right|\right\}}
(39)λ∞:=y∈Vsupmin{∣D−χ(y)∣,∣D−χΓ(y)∣}∣D(χ−χΓ)(y)∣
那么我们有,
Lemma
16
(error estimates for
g
and
q
)
.
The following error estimates are valid
(40)
∥
I
−
g
Γ
g
−
1
∥
L
∞
(
V
)
,
∥
I
−
g
Γ
−
1
g
∥
L
∞
(
V
)
≲
S
X
λ
∞
(41)
∥
1
−
q
−
1
q
I
∥
L
∞
(
V
)
,
∥
1
−
q
Γ
−
1
q
∥
L
∞
(
V
)
≲
S
X
n
λ
∞
\begin{array}{l}{\text { Lemma } 16 \text { (error estimates for } \mathrm{g} \text { and } q) . \text { The following error estimates are valid}} \\ {\begin{array}{ll}{\text { (40) }} & {\left\|\mathbf{I}-\mathrm{g}_{\Gamma} \mathrm{g}^{-1}\right\|_{L_{\infty}(\mathcal{V})},\left\|\mathbf{I}-\mathrm{g}_{\Gamma}^{-1} \mathrm{g}\right\|_{L_{\infty}(\mathcal{V})} \lesssim S_{\mathcal{X}} \lambda_{\infty}} \\ {\text { (41) }} & {\left\|1-q^{-1} q_{\mathrm{I}}\right\|_{L_{\infty}(\mathcal{V})},\left\|1-q_{\Gamma}^{-1} q\right\|_{L_{\infty}(\mathcal{V})} \lesssim S_{\mathcal{X}}^{n} \lambda_{\infty}}\end{array}}\end{array}
Lemma 16 (error estimates for g and q). The following error estimates are valid (40) (41) ∥∥I−gΓg−1∥∥L∞(V),∥∥I−gΓ−1g∥∥L∞(V)≲SXλ∞∥∥1−q−1qI∥∥L∞(V),∥∥1−qΓ−1q∥∥L∞(V)≲SXnλ∞
这里,如何理解矩阵的L无穷范数,好的,让我们来看看。
证明:
(
g
−
g
Γ
)
(
y
)
=
D
χ
(
y
)
t
D
(
χ
−
χ
T
)
(
y
)
+
D
(
χ
−
χ
T
)
(
y
)
t
D
χ
Γ
(
y
)
∀
y
∈
V
\left(\mathrm{g}-\mathrm{g}_{\mathrm{\Gamma}}\right)(\mathrm{y})=D \chi(\mathrm{y})^{t} D\left(\chi-\chi_{\mathrm{T}}\right)(\mathrm{y})+D\left(\chi-\chi_{\mathrm{T}}\right)(\mathrm{y})^{t} D \chi_{\Gamma}(\mathrm{y}) \quad \forall \mathrm{y} \in \mathcal{V}
(g−gΓ)(y)=Dχ(y)tD(χ−χT)(y)+D(χ−χT)(y)tDχΓ(y)∀y∈V
(40)的一个断言成立,第二个类似。下面来证明(41),
q
(
y
)
−
q
Γ
(
y
)
=
det
g
(
y
)
−
det
g
Γ
(
y
)
q
(
y
)
+
q
Γ
(
y
)
∀
y
∈
V
q(\mathbf{y})-q_{\Gamma}(\mathbf{y})=\frac{\operatorname{det} \mathbf{g}(\mathbf{y})-\operatorname{det} \mathbf{g}_{\Gamma}(\mathbf{y})}{q(\mathbf{y})+q_{\Gamma}(\mathbf{y})} \quad \forall \mathbf{y} \in \mathcal{V}
q(y)−qΓ(y)=q(y)+qΓ(y)detg(y)−detgΓ(y)∀y∈V
有平方差公式,我们知道这是对的。因为
q
=
det
g
=
∏
i
=
1
n
λ
i
(
g
)
q=\sqrt{\operatorname{det} \mathbf{g}}=\sqrt{\prod_{i=1}^{n} \lambda_{i}(\mathbf{g})}
q=detg=∏i=1nλi(g),我们有
(
42
)
∣
D
−
χ
(
y
)
∣
n
≤
q
(
y
)
≤
∣
D
χ
(
y
)
∣
n
∀
y
∈
V
(42) \quad\left|D^{-} \chi(\mathrm{y})\right|^{n} \leq q(\mathrm{y}) \leq|D \chi(\mathrm{y})|^{n} \quad \forall \mathrm{y} \in \mathcal{V}
(42)∣∣D−χ(y)∣∣n≤q(y)≤∣Dχ(y)∣n∀y∈V
所以呢,
∣
q
(
y
)
−
1
(
q
−
q
Γ
)
(
y
)
∣
≲
∣
D
−
χ
(
y
)
∣
−
n
∣
D
(
χ
−
χ
Γ
)
(
y
)
∣
∣
D
χ
(
y
)
∣
n
−
1
∀
y
∈
V
\left|q(\mathbf{y})^{-1}\left(q-q_{\Gamma}\right)(\mathbf{y})\right| \lesssim\left|D^{-} \chi(\mathbf{y})\right|^{-n}\left|D\left(\chi-\chi_{\Gamma}\right)(\mathbf{y})\right||D \chi(\mathbf{y})|^{n-1} \quad \forall \mathbf{y} \in \mathcal{V}
∣∣q(y)−1(q−qΓ)(y)∣∣≲∣∣D−χ(y)∣∣−n∣D(χ−χΓ)(y)∣∣Dχ(y)∣n−1∀y∈V
这个第一个不等号怎么理解?我也很迷惑。由此,(41)第一部分立可证,第二部分类似证法。
下面介绍一个模等价定理,
证明:
使用曲面导数的参数化定义,就可以证明了。
给定一个利普希茨的曲面
γ
\gamma
γ,让
S
e
q
\mathcal{S}_{e q}
Seq是利普希茨曲面集合,使得引理17成立于一个一致等价的常数
C
e
q
C_{e q}
Ceq。
Lemma 18 (uniform Poincar
e
ˊ
-Friedrichs constant). Given a Lipschitz surface
γ
for every
v
∈
H
#
1
(
Γ
)
with
Γ
∈
S
eq
there holds that
(45)
∥
v
∥
L
2
(
Γ
)
≲
∥
∇
Γ
u
∥
L
2
(
Γ
)
with the constant hidden in
≲
depending only on
γ
and
C
e
q
\begin{array}{l}{\text { Lemma 18 (uniform Poincaré-Friedrichs constant). Given a Lipschitz surface } \gamma} \\ {\text { for every } v \in H_{\#}^{1}(\Gamma) \text { with } \Gamma \in \mathcal{S}_{\text {eq }} \text { there holds that }} \\ {\begin{array}{ll}{\text { (45) }} & {\|v\|_{L_{2}(\Gamma)} \lesssim\left\|\nabla_{\Gamma} u\right\|_{L_{2}(\Gamma)}} \\ {\text { with the constant hidden in }} & {\lesssim \text { depending only on } \gamma \text { and } C_{e q}}\end{array}}\end{array}
Lemma 18 (uniform Poincareˊ-Friedrichs constant). Given a Lipschitz surface γ for every v∈H#1(Γ) with Γ∈Seq there holds that (45) with the constant hidden in ∥v∥L2(Γ)≲∥∇Γu∥L2(Γ)≲ depending only on γ and Ceq
证明:
只需要证明
∥
v
∥
L
2
(
Γ
)
≤
C
∥
∇
Γ
v
∥
L
2
(
Γ
)
∀
v
∈
H
1
(
Γ
)
\|v\|_{L_{2}(\Gamma)} \leq C\left\|\nabla_{\Gamma} v\right\|_{L_{2}(\Gamma)} \quad \forall v \in H^{1}(\Gamma)
∥v∥L2(Γ)≤C∥∇Γv∥L2(Γ)∀v∈H1(Γ)
我们用反证法,假设
v
k
∈
H
#
1
(
Γ
k
)
v_{k} \in H_{\#}^{1}\left(\Gamma_{k}\right)
vk∈H#1(Γk),使得
∥
v
k
∥
L
2
(
Γ
k
)
=
1
∥
∇
Γ
k
v
k
∥
L
2
(
Γ
k
)
→
0
\left\|v_{k}\right\|_{L_{2}\left(\Gamma_{k}\right)}=1 \quad\left\|\nabla_{\Gamma_{k}} v_{k}\right\|_{L_{2}\left(\Gamma_{k}\right)} \rightarrow 0
∥vk∥L2(Γk)=1∥∇Γkvk∥L2(Γk)→0
根据引理17,我们有
∥
v
~
k
∥
L
2
(
γ
)
≃
1
,
∥
∇
γ
v
~
k
∥
L
2
(
γ
)
→
0
\left\|\tilde{v}_{k}\right\|_{L_{2}(\gamma)} \simeq 1, \quad\left\|\nabla_{\gamma} \tilde{v}_{k}\right\|_{L_{2}(\gamma)} \rightarrow 0
∥v~k∥L2(γ)≃1,∥∇γv~k∥L2(γ)→0
因为
L
2
L_2
L2嵌入到
H
1
H_1
H1,根据嵌入定理,我们知道,在
H
1
H^1
H1中,存在
{
v
~
k
}
k
\left\{\tilde{v}_{k}\right\}_{k}
{v~k}k收敛到
v
~
∈
H
1
(
γ
)
\tilde{v} \in H^{1}(\gamma)
v~∈H1(γ)。易知,因
∇
γ
v
~
=
0
\nabla_{\gamma} \tilde{v}=0
∇γv~=0,所以
v
~
\widetilde{v}
v
是一个常数。下面只要证明
v
~
=
0
\tilde{v}=0
v~=0,即可推出矛盾。
对
∀
ϵ
>
0
\forall \epsilon>0
∀ϵ>0,
∃
k
\exists k
∃k足够大,使得
∥
v
~
k
−
v
~
∥
L
2
(
γ
)
≤
ϵ
\left\|\tilde{v}_{k}-\tilde{v}\right\|_{L_{2}(\gamma)} \leq \epsilon
∥v~k−v~∥L2(γ)≤ϵ,那么
∣
v
~
∣
=
∣
Γ
k
∣
−
1
∣
∫
Γ
k
v
~
∣
=
∣
Γ
k
∣
−
1
∣
∫
Γ
k
v
~
−
v
k
∣
≤
∣
Γ
k
∣
−
1
/
2
∥
v
~
−
v
k
∥
L
2
(
Γ
k
)
≤
C
e
q
∣
Γ
k
∣
−
1
/
2
∥
v
~
−
v
~
k
∥
L
2
(
γ
)
≤
C
e
q
∣
Γ
k
∣
−
1
/
2
ϵ
\begin{aligned}|\widetilde{v}| &=\left|\Gamma_{k}\right|^{-1}\left|\int_{\Gamma_{k}} \tilde{v}\right|=\left|\Gamma_{k}\right|^{-1}\left|\int_{\Gamma_{k}} \tilde{v}-v_{k}\right| \\ & \leq\left|\Gamma_{k}\right|^{-1 / 2}\left\|\tilde{v}-v_{k}\right\|_{L_{2}\left(\Gamma_{k}\right)} \leq C_{e q}\left|\Gamma_{k}\right|^{-1 / 2}\left\|\tilde{v}-\tilde{v}_{k}\right\|_{L_{2}(\gamma)} \leq C_{e q}\left|\Gamma_{k}\right|^{-1 / 2} \epsilon \end{aligned}
∣v
∣=∣Γk∣−1∣∣∣∣∫Γkv~∣∣∣∣=∣Γk∣−1∣∣∣∣∫Γkv~−vk∣∣∣∣≤∣Γk∣−1/2∥v~−vk∥L2(Γk)≤Ceq∣Γk∣−1/2∥v~−v~k∥L2(γ)≤Ceq∣Γk∣−1/2ϵ
对常数1使用引理17,我们有
∣
Γ
k
∣
≃
∣
Γ
∣
\left|\Gamma_{k}\right| \simeq|\Gamma|
∣Γk∣≃∣Γ∣,结果立得。
Lemma
19
(perturbation error estimate for
C
1
,
α
surfaces). Let
u
~
∈
H
#
1
(
γ
)
solve
(19) and
u
Γ
∈
H
#
1
(
Γ
)
solve (33). Then, the following error estimate for
u
−
u
Γ
holds
(46)
∥
∇
γ
(
u
~
−
u
~
Γ
)
∥
L
2
(
γ
)
≲
λ
∞
∥
f
Γ
∥
H
−
1
(
Γ
)
+
∥
f
q
q
Γ
−
1
−
f
Γ
∥
H
#
−
1
(
Γ
)
where the hidden constant depends on
S
χ
defined in (38).
\begin{array}{l}{\text { Lemma } 19 \text { (perturbation error estimate for } C^{1, \alpha} \text { surfaces). Let } \widetilde{u} \in H_{\#}^{1}(\gamma) \text { solve }} \\ {\text { (19) and } u_{\Gamma} \in H_{\#}^{1}(\Gamma) \text { solve (33). Then, the following error estimate for } u-u_{\Gamma}} \\ {\text { holds }} \\ {\begin{array}{ll}{\text { (46) }} & {\left\|\nabla_{\gamma}\left(\widetilde{u}-\widetilde{u}_{\Gamma}\right)\right\|_{L_{2}(\gamma)} \lesssim \lambda_{\infty}\left\|f_{\Gamma}\right\|_{H^{-1}(\Gamma)}+\left\|f q q_{\Gamma}^{-1}-f_{\Gamma}\right\|_{H_{\#}^{-1}(\Gamma)}} \\ {\text { where the hidden constant depends on } S_{\chi} \text { defined in (38). }}\end{array}}\end{array}
Lemma 19 (perturbation error estimate for C1,α surfaces). Let u
∈H#1(γ) solve (19) and uΓ∈H#1(Γ) solve (33). Then, the following error estimate for u−uΓ holds (46) where the hidden constant depends on Sχ defined in (38). ∥∇γ(u
−u
Γ)∥L2(γ)≲λ∞∥fΓ∥H−1(Γ)+∥∥fqqΓ−1−fΓ∥∥H#−1(Γ)
证明:我们分三步证明。
1、误差表示
使用误差矩阵的定义,我们可以写下
∥
∇
γ
(
u
~
−
u
~
Γ
)
∥
L
2
(
γ
)
2
=
∫
γ
∇
γ
u
~
⋅
∇
γ
v
~
−
∫
Γ
∇
Γ
u
Γ
⋅
∇
Γ
v
+
∫
γ
∇
γ
u
~
Γ
⋅
E
∇
γ
v
~
\left\|\nabla_{\gamma}\left(\widetilde{u}-\widetilde{u}_{\Gamma}\right)\right\|_{L_{2}(\gamma)}^{2}=\int_{\gamma} \nabla_{\gamma} \widetilde{u} \cdot \nabla_{\gamma} \widetilde{v}-\int_{\Gamma} \nabla_{\Gamma} u_{\Gamma} \cdot \nabla_{\Gamma} v+\int_{\gamma} \nabla_{\gamma} \widetilde{u}_{\Gamma} \cdot \mathbf{E} \nabla_{\gamma} \widetilde{v}
∥∇γ(u
−u
Γ)∥L2(γ)2=∫γ∇γu
⋅∇γv
−∫Γ∇ΓuΓ⋅∇Γv+∫γ∇γu
Γ⋅E∇γv
进而有,
∥
∇
γ
(
u
~
−
u
~
Γ
)
∥
L
2
(
γ
)
2
=
∫
Γ
(
f
q
q
Γ
−
f
Γ
)
v
+
∫
γ
∇
γ
u
~
Γ
⋅
E
∇
γ
v
~
\left\|\nabla_{\gamma}\left(\widetilde{u}-\widetilde{u}_{\Gamma}\right)\right\|_{L_{2}(\gamma)}^{2}=\int_{\Gamma}\left(f \frac{q}{q_{\Gamma}}-f_{\Gamma}\right) v+\int_{\gamma} \nabla_{\gamma} \widetilde{u}_{\Gamma} \cdot \mathbf{E} \nabla_{\gamma} \widetilde{v}
∥∇γ(u
−u
Γ)∥L2(γ)2=∫Γ(fqΓq−fΓ)v+∫γ∇γu
Γ⋅E∇γv
2、几何误差矩阵
重写
E
\mathbf{E}
E为
E
=
D
χ
(
(
q
−
1
q
Γ
−
1
)
g
Γ
−
1
−
g
−
1
(
I
−
g
g
Γ
−
1
)
)
D
χ
t
\mathbf{E}=D \chi\left(\left(q^{-1} q_{\Gamma}-1\right) \mathrm{g}_{\Gamma}^{-1}-\mathbf{g}^{-1}\left(\mathbf{I}-\mathbf{g g}_{\Gamma}^{-1}\right)\right) D \chi^{t}
E=Dχ((q−1qΓ−1)gΓ−1−g−1(I−ggΓ−1))Dχt
使用
g
g
g和
q
q
q的误差估计式,我们可以得到
∥
E
∥
L
∞
(
γ
)
≲
λ
∞
\|\mathbf{E}\|_{L_{\infty}(\gamma)} \lesssim \lambda_{\infty}
∥E∥L∞(γ)≲λ∞
3、最后的估计
由holder不等式,我们有
∫
γ
∇
u
~
Γ
⋅
E
∇
γ
v
~
≤
∥
∇
γ
v
~
∥
L
2
(
γ
)
∥
∇
γ
u
~
Γ
∥
L
2
(
γ
)
∥
E
∥
L
∞
(
γ
)
\int_{\gamma} \nabla \widetilde{u}_{\Gamma} \cdot \mathbf{E} \nabla_{\gamma} \widetilde{v} \leq\left\|\nabla_{\gamma} \widetilde{v}\right\|_{L_{2}(\gamma)}\left\|\nabla_{\gamma} \widetilde{u}_{\Gamma}\right\|_{L_{2}(\gamma)}\|\mathbf{E}\|_{L_{\infty}(\gamma)}
∫γ∇u
Γ⋅E∇γv
≤∥∇γv
∥L2(γ)∥∇γu
Γ∥L2(γ)∥E∥L∞(γ)
使用模等价定理,我们可以得到
∫
Γ
(
f
q
q
Γ
−
f
Γ
)
v
=
∫
Γ
(
f
q
q
Γ
−
f
Γ
)
(
v
−
v
‾
)
≤
∥
f
q
q
Γ
−
1
−
f
Γ
∥
H
#
−
1
(
Γ
)
∥
∇
Γ
v
∥
L
2
(
Γ
)
\int_{\Gamma}\left(f \frac{q}{q_{\Gamma}}-f_{\Gamma}\right) v=\int_{\Gamma}\left(f \frac{q}{q_{\Gamma}}-f_{\Gamma}\right)(v-\overline{v}) \leq\left\|f q q_{\Gamma}^{-1}-f_{\Gamma}\right\|_{H_{\#}^{-1}(\Gamma)}\left\|\nabla_{\Gamma} v\right\|_{L_{2}(\Gamma)}
∫Γ(fqΓq−fΓ)v=∫Γ(fqΓq−fΓ)(v−v)≤∥∥fqqΓ−1−fΓ∥∥H#−1(Γ)∥∇Γv∥L2(Γ)
最后利用引理17即可。