曲面上的微积分(二)
从上一次讨论结束,回去之后,我花了一点时间走了一遍证明。心中依然遗留了两个问题。
对于Laplace-Beltrami方程的弱形式,
∫
γ
φ
~
Δ
γ
v
~
=
−
∫
γ
∇
γ
φ
~
⋅
∇
γ
v
~
\int_{\gamma} \tilde{\varphi} \Delta_{\gamma} \tilde{v}=-\int_{\gamma} \nabla_{\gamma} \tilde{\varphi} \cdot \nabla_{\gamma} \tilde{v}
∫γφ~Δγv~=−∫γ∇γφ~⋅∇γv~
我们要求这里的
ϕ
~
\tilde \phi
ϕ~是
C
1
C^1
C1且具有紧支集的。也就是说在迹的意义下,它在边界上是等于零的。
∀
v
~
∈
H
#
1
(
γ
)
\forall \widetilde{v} \in H_{\#}^{1}(\gamma)
∀v
∈H#1(γ),满足这个条件吗?
另一个问题是,
r
k
>
2
r_k > 2
rk>2
∥
u
∥
W
r
k
2
(
z
)
≲
∥
ℓ
∥
L
r
k
(
z
)
\|u\|_{W_{r_{k}}^{2}}(z) \lesssim\|\ell\|_{L_{r_{k}}}(z)
∥u∥Wrk2(z)≲∥ℓ∥Lrk(z)
是否意味着
r
k
=
2
r_k=2
rk=2的时候,这个依然成立。
曲率
接下来,让我们来谈一谈和曲率相关的东西。下面我们总是假定 γ \gamma γ是 C 2 C^2 C2的。
首先,定义曲线的附近区域为
(29)
N
(
δ
)
:
=
{
x
∈
R
n
+
1
:
∣
d
(
x
)
∣
<
δ
}
\begin{array}{llll}{\text { (29) }} & {\mathcal{N}(\delta)} & { :=\left\{\mathbf{x} \in \mathbb{R}^{n+1} :|d(\mathbf{x})|<\delta\right\}}\end{array}
(29) N(δ):={x∈Rn+1:∣d(x)∣<δ}
形状算子
W
(
x
)
\mathbf{W}(\mathbf{x})
W(x)有一个零特征值,对应的特征向量为法向量。剩余的特征值我们称它们为主曲率,用
κ
i
(
x
)
\kappa_{i}(\mathbf{x})
κi(x)来表示。那么我们可以定义最大曲率:
(
30
)
K
(
x
)
:
=
max
1
≤
i
≤
n
∣
κ
i
(
x
)
∣
∀
x
∈
γ
;
K
∞
:
=
∥
K
∥
L
∞
(
γ
)
\begin{array}{cc}{(30)} & {K(\mathbf{x}) :=\max _{1 \leq i \leq n}\left|\kappa_{i}(\mathbf{x})\right| \quad \forall \mathbf{x} \in \gamma ; \quad K_{\infty} :=\|K\|_{L \infty(\gamma)}}\end{array}
(30)K(x):=max1≤i≤n∣κi(x)∣∀x∈γ;K∞:=∥K∥L∞(γ)
我们设置
(
31
)
N
:
=
{
x
∈
R
n
+
1
:
dist
(
x
,
γ
)
<
1
2
K
∞
}
=
N
(
K
∞
/
2
)
(31) \quad \mathcal{N} :=\left\{\mathbf{x} \in \mathbb{R}^{n+1} : \operatorname{dist}(\mathbf{x}, \gamma)<\frac{1}{2 K_{\infty}}\right\}=\mathcal{N}\left(K_{\infty} / 2\right)
(31)N:={x∈Rn+1:dist(x,γ)<2K∞1}=N(K∞/2)
综述,这个表达里面有个错误,最后应该写为
N
(
1
/
(
2
K
∞
)
)
\mathcal{N}\left(1/(2K_{\infty}) \right)
N(1/(2K∞)),我说得对吧。
下面陈述一个引理,关于平行曲面的曲率。
γ
ϵ
\gamma_\epsilon
γϵ是
γ
\gamma
γ的平行曲面,数学上定义为:
γ
ϵ
:
=
{
x
∈
N
:
d
(
x
)
=
ε
}
\gamma_{\epsilon} :=\{\mathbf{x} \in \mathcal{N} : d(\mathbf{x})=\varepsilon\}
γϵ:={x∈N:d(x)=ε}
那么,我们有这个一个关系:
(32)
κ
i
(
x
)
=
κ
i
(
P
d
(
x
)
)
1
+
ε
κ
i
(
P
d
(
x
)
)
∀
x
∈
γ
ε
\begin{array}{llll}{\text { (32) }} & {\kappa_{i}(\mathbf{x})=\frac{\kappa_{i}\left(\mathbf{P}_{d}(\mathbf{x})\right)}{1+\varepsilon \kappa_{i}\left(\mathbf{P}_{d}(\mathbf{x})\right)}} & {\forall \mathbf{x} \in \gamma_{\varepsilon}}\end{array}
(32) κi(x)=1+εκi(Pd(x))κi(Pd(x))∀x∈γε
并且,他们的特征向量也是相对应的。
我们简单做一个证明,因为梯度关系
∇
d
(
x
)
=
∇
d
(
P
d
(
x
)
)
=
∇
d
(
x
−
d
(
x
)
∇
d
(
x
)
)
∀
x
∈
N
\nabla d(\mathbf{x})=\nabla d\left(\mathbf{P}_{d}(\mathbf{x})\right)=\nabla d(\mathbf{x}-d(\mathbf{x}) \nabla d(\mathbf{x})) \quad \forall \mathbf{x} \in \mathcal{N}
∇d(x)=∇d(Pd(x))=∇d(x−d(x)∇d(x))∀x∈N
求导,使用链式法则和乘积的导数规则,可得
D
2
d
(
x
)
=
D
2
d
(
P
d
(
x
)
)
(
I
−
∇
d
(
x
)
⊗
∇
d
(
x
)
−
d
(
x
)
D
2
d
(
x
)
)
D^{2} d(\mathbf{x})=D^{2} d\left(\mathbf{P}_{d}(\mathbf{x})\right)\left(\mathbf{I}-\nabla d(\mathbf{x}) \otimes \nabla d(\mathbf{x})-d(\mathbf{x}) D^{2} d(\mathbf{x})\right)
D2d(x)=D2d(Pd(x))(I−∇d(x)⊗∇d(x)−d(x)D2d(x))
做一些项的移动,我们可以得到
(
I
+
d
(
x
)
D
2
d
(
P
d
(
x
)
)
)
D
2
d
(
x
)
=
D
2
d
(
P
d
(
x
)
)
(
I
−
∇
d
(
x
)
⊗
∇
d
(
x
)
)
=
D
2
d
(
P
d
(
x
)
)
\left(\mathbf{I}+d(\mathbf{x}) D^{2} d\left(\mathbf{P}_{d}(\mathbf{x})\right)\right) D^{2} d(\mathbf{x})=D^{2} d\left(\mathbf{P}_{d}(\mathbf{x})\right)(\mathbf{I}-\nabla d(\mathbf{x}) \otimes \nabla d(\mathbf{x}))=D^{2} d\left(\mathbf{P}_{d}(\mathbf{x})\right)
(I+d(x)D2d(Pd(x)))D2d(x)=D2d(Pd(x))(I−∇d(x)⊗∇d(x))=D2d(Pd(x))
另一方面,
κ
i
(
I
+
ε
D
2
d
(
P
d
(
x
)
)
)
=
1
+
ε
κ
i
(
P
d
(
x
)
)
≥
1
2
\kappa_{i}\left(\mathbf{I}+\varepsilon D^{2} d\left(\mathbf{P}_{d}(\mathbf{x})\right)\right)=1+\varepsilon \kappa_{i}\left(\mathbf{P}_{d}(\mathbf{x})\right) \geq \frac{1}{2}
κi(I+εD2d(Pd(x)))=1+εκi(Pd(x))≥21
告诉我们,
I
+
ε
D
2
d
(
P
d
(
x
)
)
\mathbf{I}+\varepsilon D^{2} d\left(\mathbf{P}_{d}(\mathbf{x})\right)
I+εD2d(Pd(x))是非奇异的。那么,我们有
W
(
x
)
=
(
I
+
ε
W
(
P
d
(
x
)
)
)
−
1
W
(
P
d
(
x
)
)
\mathbf{W}(\mathbf{x})=\left(\mathbf{I}+\varepsilon \mathbf{W}\left(\mathbf{P}_{d}(\mathbf{x})\right)\right)^{-1} \mathbf{W}\left(\mathbf{P}_{d}(\mathbf{x})\right)
W(x)=(I+εW(Pd(x)))−1W(Pd(x))
根据这个以及一些数值线性代数的知识,我们容易得到结论。
下面介绍第二个引理,第二基本型。
曲面的第二基本型
h
=
(
h
i
j
)
i
,
j
=
1
n
\mathbf{h}=\left(h_{i j}\right)_{i, j=1}^{n}
h=(hij)i,j=1n定义为:
h
i
j
(
y
)
:
=
−
∂
i
ν
(
y
)
⋅
∂
j
χ
(
y
)
=
ν
(
y
)
⋅
∂
i
j
χ
(
y
)
∀
y
∈
V
h_{i j}(\mathbf{y}) :=-\partial_{i} \boldsymbol{\nu}(\mathbf{y}) \cdot \partial_{j} \chi(\mathbf{y})=\boldsymbol{\nu}(\mathbf{y}) \cdot \partial_{i j} \boldsymbol{\chi}(\mathbf{y}) \quad \forall \mathbf{y} \in \mathcal{V}
hij(y):=−∂iν(y)⋅∂jχ(y)=ν(y)⋅∂ijχ(y)∀y∈V
第二个偏导是
j
j
j不是
i
i
i,综述上有些小错误。第二个等号是因为
ν
⋅
∂
j
χ
=
0
\nu \cdot \partial _j \chi = 0
ν⋅∂jχ=0,求导即可。
引理描述如下,如果
s
=
−
h
g
−
1
\mathbf{s}=-\mathbf{h g}^{-1}
s=−hg−1
那么
s
\mathbf{s}
s的特征值就是
γ
\gamma
γ的主曲率。
简单的证明如下,
∂
i
ν
(
y
)
=
D
γ
ν
(
x
)
∂
i
χ
(
y
)
=
∑
k
=
1
n
s
i
k
(
y
)
∂
k
χ
(
y
)
∀
y
∈
V
\partial_{i} \nu(\mathbf{y})=D_{\gamma} \nu(\mathbf{x}) \partial_{i} \chi(\mathbf{y})=\sum_{k=1}^{n} s_{i k}(\mathbf{y}) \partial_{k} \chi(\mathbf{y}) \quad \forall \mathbf{y} \in \mathcal{V}
∂iν(y)=Dγν(x)∂iχ(y)=k=1∑nsik(y)∂kχ(y)∀y∈V
两边同乘以
∂
j
χ
(
y
)
\partial_{j} \chi(\mathbf{y})
∂jχ(y)可得,
h
i
j
(
y
)
=
−
∂
i
ν
(
y
)
⋅
∂
j
χ
(
y
)
=
−
∑
k
=
1
n
s
i
k
∂
k
χ
(
y
)
⋅
∂
j
χ
(
y
)
=
−
∑
k
=
1
n
s
i
k
g
k
j
h_{i j}(\mathbf{y})=-\partial_{i} \nu(\mathbf{y}) \cdot \partial_{j} \chi(\mathbf{y})=-\sum_{k=1}^{n} s_{i k} \partial_{k} \chi(\mathbf{y}) \cdot \partial_{j} \chi(\mathbf{y})=-\sum_{k=1}^{n} s_{i k} g_{k j}
hij(y)=−∂iν(y)⋅∂jχ(y)=−k=1∑nsik∂kχ(y)⋅∂jχ(y)=−k=1∑nsikgkj
这就是
h
=
−
s
g
\mathbf{h}=-\mathbf{s g}
h=−sg。在综述中,它缺失了一些负号。现在的问题仔仔的问题在于,是否
s
\mathbf{s}
s和
D
γ
ν
D_\gamma \nu
Dγν有除零之外相同的特征值?将上述的表达,写成矩阵,我们有
s
D
χ
T
=
D
χ
T
D
γ
ν
\mathbf{s}D\chi^T=D\chi^TD_\gamma \nu
sDχT=DχTDγν
有数值线性代数的知识,我们知道他俩有相同的特征值。
曲面正则性和距离函数的性质
我们之前讨论的所有,总是假设
γ
\gamma
γ是
C
2
C^2
C2的,并且总是假设在以下的区域考虑最近点投影:
N
:
=
{
x
∈
R
n
+
1
:
dist
(
x
,
γ
)
<
1
2
K
∞
}
=
N
(
1
/
(
2
K
∞
)
)
\mathcal{N} :=\left\{\mathbf{x} \in \mathbb{R}^{n+1} : \operatorname{dist}(\mathbf{x}, \gamma)<\frac{1}{2 K_{\infty}}\right\}=\mathcal{N}\left( 1/( 2K_{\infty})\right)
N:={x∈Rn+1:dist(x,γ)<2K∞1}=N(1/(2K∞))
那么正则性更差的曲面怎么办呢?为了解释清楚事情,我们需要一些引理。
简单地说,
k
≥
2
k\ge 2
k≥2,
γ
\gamma
γ是
C
k
C^k
Ck,
d
d
d是
C
k
C^k
Ck,最近点投影算子
P
d
(
x
)
\mathbf{P}_{d}(\mathbf{x})
Pd(x)是
C
k
−
1
C^{k-1}
Ck−1的于
N
(
1
/
K
∞
)
\mathcal{N}(1/K_\infty)
N(1/K∞)。
那么
k
=
1
k=1
k=1呢?首先,我们给出两个定义。
reach
(
γ
)
:
=
sup
{
δ
≥
0
:
all
x
∈
N
(
δ
)
have a unique closest point
P
d
(
x
)
∈
γ
}
\operatorname{reach}(\gamma) :=\sup \left\{\delta \geq 0 : \text { all } \mathbf{x} \in \mathcal{N}(\delta) \text { have a unique closest point } \mathbf{P}_{d}(\mathbf{x}) \in \gamma\right\}
reach(γ):=sup{δ≥0: all x∈N(δ) have a unique closest point Pd(x)∈γ}
U
(
γ
)
:
=
{
x
∈
R
n
+
1
:
x
has a unique closest point in
γ
}
U(\gamma) :=\left\{\mathbf{x} \in \mathbb{R}^{n+1} : \mathbf{x} \text { has a unique closest point in } \gamma\right\}
U(γ):={x∈Rn+1:x has a unique closest point in γ}
那么,我们有如下引理:
也就是说
d
d
d在
x
\mathbf{x}
x是可微的,那么在
x
\mathbf{x}
x以内点的投影就是唯一的。
下面定义一些常量。最近法向分割:
S
(
x
,
ρ
)
:
=
[
x
−
ρ
ν
(
x
)
,
x
+
ρ
ν
(
x
)
]
S(\mathbf{x}, \rho) :=[\mathbf{x}-\rho \boldsymbol{\nu}(\mathbf{x}), \mathbf{x}+\rho \boldsymbol{\nu}(\mathbf{x})]
S(x,ρ):=[x−ρν(x),x+ρν(x)]
定义一些
r
0
r_0
r0,
1
r
0
:
=
sup
x
,
y
∈
Y
,
x
≠
y
∣
ν
(
x
)
−
ν
(
y
)
∣
∣
x
−
y
∣
1
r
0
′
:
=
sup
{
ρ
≥
0
:
S
(
x
,
ρ
)
∩
S
(
y
,
ρ
)
=
∅
∀
x
,
y
∈
γ
,
x
≠
y
}
1
r
0
′
′
:
=
sup
{
ρ
≥
0
:
B
ρ
(
x
±
ρ
ν
(
x
)
)
‾
contain respectively no points
interior or exterior to
γ
for all
x
∈
γ
}
1
r
′
′
′
:
=
sup
x
,
y
∈
Y
,
x
≠
y
∣
2
(
y
−
x
)
⋅
ν
(
x
)
∣
∣
y
−
x
∣
2
\begin{array}{l}{\frac{1}{r_{0}} :=\sup _{\mathbf{x}, \mathbf{y} \in \mathcal{Y}, \mathbf{x} \neq \mathbf{y}} \frac{|\boldsymbol{\nu}(\mathbf{x})-\boldsymbol{\nu}(\mathbf{y})|}{|\mathbf{x}-\mathbf{y}|}} \\ {\frac{1}{r_{0}^{\prime}} :=\sup \{\rho \geq 0 : S(\mathbf{x}, \rho) \cap S(\mathbf{y}, \rho)=\emptyset \forall \mathbf{x}, \mathbf{y} \in \gamma, \mathbf{x} \neq \mathbf{y}\}} \\ {\frac{1}{r_{0}^{\prime \prime}} :=\sup \{\rho \geq 0 : \overline{B_{\rho}(\mathbf{x} \pm \rho \boldsymbol{\nu}(\mathbf{x}))} \text { contain respectively no points }} \\ {\text { interior or exterior to } \gamma \text { for all } \mathbf{x} \in \gamma\}} \\ {\frac{1}{\mathrm{r}^{\prime \prime \prime}} :=\sup _{\mathbf{x}, \mathbf{y} \in \mathcal{Y}, \mathbf{x} \neq \mathbf{y}} \frac{|2(\mathbf{y}-\mathbf{x}) \cdot \boldsymbol{\nu}(\mathbf{x})|}{|\mathbf{y}-\mathbf{x}|^{2}}}\end{array}
r01:=supx,y∈Y,x=y∣x−y∣∣ν(x)−ν(y)∣r0′1:=sup{ρ≥0:S(x,ρ)∩S(y,ρ)=∅∀x,y∈γ,x=y}r0′′1:=sup{ρ≥0:Bρ(x±ρν(x)) contain respectively no points interior or exterior to γ for all x∈γ}r′′′1:=supx,y∈Y,x=y∣y−x∣2∣2(y−x)⋅ν(x)∣
这里,
r
0
′
′
′
=
reach
(
γ
)
r_{0}^{\prime \prime \prime}=\operatorname{reach}(\gamma)
r0′′′=reach(γ)。
我们有如下引理:
和这样一个定理:
换言之,
reach
>
0
\operatorname{reach}>0
reach>0,
C
1
C^1
C1曲面就是
C
1
,
1
C^{1,1}
C1,1。
曲面上的散度定理
我们考虑在具有边界的曲面上的散度定理。
Proposition 12 (divergence theorem). Let γ \gamma γ be a compact, oriented surface of class C 2 C^{2} C2 with Lipschitz boundary ∂ γ \partial \gamma ∂γ . Let H = ∑ i = 1 n κ i H=\sum_{i=1}^{n} \kappa_{i} H=∑i=1nκi be the total curvature of γ \gamma γ and μ \mu μ be the unit outward normal to ∂ γ \partial \gamma ∂γ lying in the tangent hyperplane to γ . \gamma . γ. If v ~ : γ → R ∈ H 1 ( γ ) , \tilde{v} : \gamma \rightarrow \mathbb{R} \in H^{1}(\gamma), v~:γ→R∈H1(γ), then
∫ γ ∇ γ v ~ = ∫ γ v ~ H ν + ∫ ∂ γ v ~ μ \int_{\gamma} \nabla_{\gamma} \tilde{v}=\int_{\gamma} \tilde{v} H \nu+\int_{\partial \gamma} \tilde{v} \mu ∫γ∇γv~=∫γv~Hν+∫∂γv~μ
我们简单地证明一下,给定
0
<
ε
<
1
2
K
∞
0<\varepsilon<\frac{1}{2 K_{\infty}}
0<ε<2K∞1,定义
Ω
ε
:
=
{
z
=
x
+
ρ
ν
(
x
)
:
x
∈
γ
,
∣
ρ
∣
<
ε
}
\Omega_{\varepsilon} :=\{\mathbf{z}=\mathbf{x}+\rho \boldsymbol{\nu}(\mathbf{x}) : \quad \mathbf{x} \in \gamma,|\rho|<\varepsilon\}
Ωε:={z=x+ρν(x):x∈γ,∣ρ∣<ε}
以及
γ
±
ε
:
=
{
x
±
ε
ν
(
x
)
:
x
∈
γ
}
,
λ
ε
:
=
∂
Ω
ε
\
(
γ
ε
∪
γ
−
ε
)
\gamma_{ \pm \varepsilon} :=\{\mathbf{x} \pm \varepsilon \boldsymbol{\nu}(\mathbf{x}) : \mathbf{x} \in \gamma\}, \quad \lambda_{\varepsilon} :=\partial \Omega_{\varepsilon} \backslash\left(\gamma_{\varepsilon} \cup \gamma_{-\varepsilon}\right)
γ±ε:={x±εν(x):x∈γ},λε:=∂Ωε\(γε∪γ−ε)
v
v
v是
v
~
\tilde v
v~的
C
1
C^1
C1扩张,在区域内使用散度定理,可以得到
∫
Ω
ϵ
∇
v
=
∫
∂
Ω
ε
v
ν
ε
=
∫
γ
ε
v
ν
∘
P
d
−
∫
γ
−
ε
v
ν
∘
P
d
+
∫
λ
ε
v
μ
∘
P
d
\int_{\Omega_{\mathrm{\epsilon}}} \nabla v=\int_{\partial \Omega_{\varepsilon}} v \boldsymbol{\nu}_{\varepsilon}=\int_{\gamma_{\varepsilon}} v \boldsymbol{\nu} \circ \mathbf{P}_{d}-\int_{\gamma_{-\varepsilon}} v \boldsymbol{\nu} \circ \mathbf{P}_{d}+\int_{\lambda_{\varepsilon}} v \boldsymbol{\mu} \circ \mathbf{P}_{d}
∫Ωϵ∇v=∫∂Ωεvνε=∫γεvν∘Pd−∫γ−εvν∘Pd+∫λεvμ∘Pd
这里的
ν
ε
\boldsymbol{\nu}_{\varepsilon}
νε是
∂
Ω
ε
\partial \Omega_{\varepsilon}
∂Ωε的单位外法向量。两边除以
2
ϵ
2\epsilon
2ϵ。
左边那一项,根据(27)式,趋近于
1
2
ε
∫
Ω
ε
∇
v
=
1
2
ε
∫
Ω
ε
(
I
−
d
(
x
)
D
2
d
(
x
)
)
∇
γ
v
~
(
P
d
(
x
)
)
d
x
=
→
0
ε
→
0
∫
γ
∇
γ
v
~
\frac{1}{2 \varepsilon} \int_{\Omega_{\varepsilon}} \nabla v=\frac{1}{2 \varepsilon} \int_{\Omega_{\varepsilon}}\left(\mathbf{I}-d(\mathbf{x}) D^{2} d(\mathbf{x})\right) \nabla_{\gamma} \tilde{v}\left(\mathbf{P}_{d}(\mathbf{x})\right) d \mathbf{x} \underset{\varepsilon \rightarrow 0}{=\rightarrow 0} \int_{\gamma} \nabla_{\gamma} \tilde{v}
2ε1∫Ωε∇v=2ε1∫Ωε(I−d(x)D2d(x))∇γv~(Pd(x))dxε→0=→0∫γ∇γv~
相似地,右边的最后一项
1
2
ε
∫
λ
ε
v
μ
∘
P
d
⟶
∫
∂
γ
v
~
μ
\frac{1}{2 \varepsilon} \int_{\lambda_{\varepsilon}} v \boldsymbol{\mu} \circ \mathbf{P}_{d} \longrightarrow \int_{\partial \gamma} \tilde{v} \boldsymbol{\mu}
2ε1∫λεvμ∘Pd⟶∫∂γv~μ
之后,我们考虑
lim
ε
→
0
1
2
ε
(
∫
γ
ε
v
ν
∘
P
d
−
∫
γ
−
ε
v
ν
∘
P
d
)
=
d
d
ρ
∫
γ
ρ
v
∇
d
∣
ρ
=
0
=
d
d
ρ
∫
V
v
(
x
)
∇
d
(
x
+
ρ
∇
d
(
x
)
)
q
ρ
(
y
)
d
y
∣
ρ
=
0
\begin{aligned} \lim _{\varepsilon \rightarrow 0} \frac{1}{2 \varepsilon}\left(\int_{\gamma_{\varepsilon}} v \nu \circ \mathbf{P}_{d}\right.&\left.-\int_{\gamma_{-\varepsilon}} v \boldsymbol{\nu} \circ \mathbf{P}_{d}\right)=\left.\frac{d}{d \rho} \int_{\gamma_{\rho}} v \nabla d\right|_{\rho=0} \\ &=\left.\frac{d}{d \rho} \int_{\mathcal{V}} v(\mathbf{x}) \nabla d(\mathbf{x}+\rho \nabla d(\mathbf{x})) q_{\rho}(\mathbf{y}) d \mathbf{y}\right|_{\rho=0} \end{aligned}
ε→0lim2ε1(∫γεvν∘Pd−∫γ−εvν∘Pd)=dρd∫γρv∇d∣∣∣∣∣ρ=0=dρd∫Vv(x)∇d(x+ρ∇d(x))qρ(y)dy∣∣∣∣ρ=0
考虑到
d
d
ρ
∇
d
(
x
+
ρ
∇
d
(
x
)
)
=
D
2
d
(
x
+
ρ
∇
d
(
x
)
)
∇
d
(
x
)
=
0
\frac{d}{d \rho} \nabla d(\mathbf{x}+\rho \nabla d(\mathbf{x}))=D^{2} d(\mathbf{x}+\rho \nabla d(\mathbf{x})) \nabla d(\mathbf{x})=0
dρd∇d(x+ρ∇d(x))=D2d(x+ρ∇d(x))∇d(x)=0,只需要估计
d
d
ρ
q
ρ
\frac{d}{d \rho} q_{\rho}
dρdqρ。
使用面积元之间的关系:
q
(
y
)
q
Γ
(
y
)
=
det
(
I
−
d
(
x
)
W
(
x
)
)
(
ν
(
x
)
⋅
ν
Γ
(
x
)
)
∀
x
∈
Γ
\frac{q(\mathbf{y})}{q_{\Gamma}(\mathbf{y})}=\operatorname{det}(\mathbf{I}-d(\mathbf{x}) \mathbf{W}(\mathbf{x}))\left(\boldsymbol{\nu}(\mathbf{x}) \cdot \boldsymbol{\nu}_{\Gamma}(\mathbf{x})\right) \quad \forall \mathbf{x} \in \Gamma
qΓ(y)q(y)=det(I−d(x)W(x))(ν(x)⋅νΓ(x))∀x∈Γ
我们有:
q
ρ
(
y
)
q
(
y
)
=
1
det
(
I
−
ρ
D
2
d
(
x
)
)
=
1
∏
i
=
1
n
(
1
−
ρ
κ
i
(
x
)
)
=
∏
i
=
1
n
(
1
+
ρ
κ
i
(
P
d
(
x
)
)
)
\frac{q_{\rho}(\mathbf{y})}{q(\mathbf{y})}=\frac{1}{\operatorname{det}\left(\mathbf{I}-\rho D^{2} d(\mathbf{x})\right)}=\frac{1}{\prod_{i=1}^{n}\left(1-\rho \kappa_{i}(\mathbf{x})\right)}=\prod_{i=1}^{n}\left(1+\rho \kappa_{i}\left(\mathbf{P}_{d}(\mathbf{x})\right)\right)
q(y)qρ(y)=det(I−ρD2d(x))1=∏i=1n(1−ρκi(x))1=i=1∏n(1+ρκi(Pd(x)))
最后一个等式是因为前面的引理。所以呢,我们有
d
d
ρ
q
ρ
(
y
)
∣
ρ
=
0
=
q
(
y
)
∑
i
=
1
n
κ
i
(
P
d
(
x
)
)
=
q
(
y
)
H
(
P
d
(
x
)
)
\left.\frac{d}{d \rho} q_{\rho}(\mathbf{y})\right|_{\rho=0}=q(\mathbf{y}) \sum_{i=1}^{n} \kappa_{i}\left(\mathbf{P}_{d}(\mathbf{x})\right)=q(\mathbf{y}) H\left(\mathbf{P}_{d}(\mathbf{x})\right)
dρdqρ(y)∣∣∣∣ρ=0=q(y)i=1∑nκi(Pd(x))=q(y)H(Pd(x))
由此证明了
v
~
\tilde v
v~是
C
1
C^1
C1的时候是成立的,因为
C
1
C^1
C1在
H
1
H^1
H1中是稠密的,结论得证。
由上,对于向量函数,我们可以得到:
∫
γ
div
γ
v
~
=
∫
γ
H
v
~
⋅
ν
+
∫
∂
γ
v
~
⋅
μ
\int_{\gamma} \operatorname{div}_{\gamma} \tilde{\mathbf{v}}=\int_{\gamma} H \widetilde{\mathbf{v}} \cdot \boldsymbol{\nu}+\int_{\partial \gamma} \widetilde{\mathbf{v}} \cdot \boldsymbol{\mu}
∫γdivγv~=∫γHv
⋅ν+∫∂γv
⋅μ
上式中,令
v
~
=
w
~
∇
γ
v
~
\widetilde{\mathbf{v}}=\widetilde{w} \nabla_{\gamma} \widetilde{v}
v
=w
∇γv
,我们有
∫
γ
w
~
Δ
γ
v
~
+
∇
γ
w
~
⋅
∇
γ
v
~
=
∫
∂
γ
w
~
∇
γ
v
~
⋅
μ
\int_{\gamma} \widetilde{w} \Delta_{\gamma} \widetilde{v}+\nabla_{\gamma} \widetilde{w} \cdot \nabla_{\gamma} \widetilde{v}=\int_{\partial \gamma} \widetilde{w} \nabla_{\gamma} \widetilde{v} \cdot \boldsymbol{\mu}
∫γw
Δγv
+∇γw
⋅∇γv
=∫∂γw
∇γv
⋅μ