曲面上的微积分(一)

曲面上的微积分(一)

参数化方法、迹方法和窄带方法是三种主要方法去求解Laplace-Beltrami问题。首先,我会介绍一些关于曲面上微积分的知识。

参数化曲面

定义曲面的参数化表示,
χ i : V i → U i ∩ γ ⊂ R n + 1 \chi_{i} : \mathcal{V}_{i} \rightarrow \mathcal{U}_{i} \cap \gamma \subset \mathbb{R}^{n+1} χi:ViUiγRn+1

这里的 γ \gamma γ是紧的,有向的(orientable),属于 C 1 , α C^{1,\alpha} C1,α的。考虑一个单映射是足够的,所以为了方便,我们下面drop掉index i。那么,对于 x ∈ U ∩ γ \mathbf{x} \in \mathcal U \cap \gamma xUγ
y : = χ − 1 ( x ) ∈ V \mathbf{y} :=\chi^{-1}(\mathbf{x}) \in \mathcal{V} y:=χ1(x)V
那么, χ \chi χ的微分就可以写为,
D χ ( y ) = ( ∂ j χ ( y ) ) j = 1 n ∈ R ( n + 1 ) × n D \chi(\mathbf{y})=\left(\partial_{j} \chi(\mathbf{y})\right)_{j=1}^{n} \in \mathbb{R}^{(n+1) \times n} Dχ(y)=(jχ(y))j=1nR(n+1)×n

故而,我们定义一个s.p.d的矩阵作为第一基本型,
 (1)  g ( y ) : = D χ ( y ) t D χ ( y ) ∀ y ∈ V \text { (1) } \quad \mathbf{g}(\mathbf{y}) :=D \chi(\mathbf{y})^{t} D \chi(\mathbf{y}) \quad \forall \mathbf{y} \in \mathcal{V}  (1) g(y):=Dχ(y)tDχ(y)yV
定义法向量,
N ( y ) = ∑ j = 1 n + 1 A j ( y ) e j \mathbf{N}(\mathbf{y})=\sum_{j=1}^{n+1} A_{j}(\mathbf{y}) \mathbf{e}_{j} N(y)=j=1n+1Aj(y)ej
A j : = det ⁡ ( e j , D X ) A_{j} :=\operatorname{det}\left(\mathbf{e}_{j}, D_{\mathcal{X}}\right) Aj:=det(ej,DX)
容易知道,
N ⋅ ∂ i χ = ∑ j = 1 n + 1 e j ⋅ ∂ i χ det ⁡ ( e j , D X ) = det ⁡ ( ∑ j = 1 n + 1 ( e j ⋅ ∂ i χ ) e j , D X ) = det ⁡ ( ∂ i χ , D X ) = 0 \mathbf{N} \cdot \partial_{i} \chi=\sum_{j=1}^{n+1} \mathbf{e}_{j} \cdot \partial_{i} \chi \operatorname{det}\left(\mathbf{e}_{j}, D_{\mathcal{X}}\right)=\operatorname{det}\left(\sum_{j=1}^{n+1}\left(\mathbf{e}_{j} \cdot \partial_{i} \chi\right) \mathbf{e}_{j}, D_{\mathcal{X}}\right)=\operatorname{det}\left(\partial_{i} \chi, D_{\mathcal{X}}\right)=0 Niχ=j=1n+1ejiχdet(ej,DX)=det(j=1n+1(ejiχ)ej,DX)=det(iχ,DX)=0
所以,我们可以定义单位法向量,
 (2)  ν ( y ) : = N ( y ) ∣ N ( y ) ∣ ∀ y ∈ V \text { (2) } \quad \nu(\mathbf{y}) :=\frac{\mathbf{N}(\mathbf{y})}{|\mathbf{N}(\mathbf{y})|} \quad \forall \mathbf{y} \in \mathcal{V}  (2) ν(y):=N(y)N(y)yV
定义矩阵
T ( y ) : = [ D χ ( y ) , ν ( y ) ] ∈ R ( n + 1 ) × ( n + 1 ) ∀ y ∈ V \mathbf{T}(\mathbf{y}) :=[D \chi(\mathbf{y}), \boldsymbol{\nu}(\mathbf{y})] \in \mathbb{R}^{(n+1) \times(n+1)} \quad \forall \mathbf{y} \in \mathcal{V} T(y):=[Dχ(y),ν(y)]R(n+1)×(n+1)yV
它是可逆的,我们可以把它的逆写成,
T − 1 = [ B v t ] , B ∈ R n × ( n + 1 ) , v ∈ R n \mathbf{T}^{-1}=\left[\begin{array}{l}{\mathbf{B}} \\ {\mathbf{v}^{t}}\end{array}\right], \quad \mathbf{B} \in \mathbb{R}^{n \times(n+1)}, \mathbf{v} \in \mathbb{R}^{n} T1=[Bvt],BRn×(n+1),vRn
注意到,
I ( n + 1 ) × ( n + 1 ) = T − 1 T = [ B D χ B v v t D χ v t ν ] \mathbf{I}_{(n+1) \times(n+1)}=\mathbf{T}^{-1} \mathbf{T}=\left[\begin{array}{cc}{\mathbf{B} D \chi} & {\mathbf{B} \mathbf{v}} \\ {\mathbf{v}^{t} D \chi} & {\mathbf{v}^{t} \nu}\end{array}\right] I(n+1)×(n+1)=T1T=[BDχvtDχBvvtν]
因此呢,
B D χ = I n × n , v t D χ = 0 , v t ν = 1 \mathbf{B} D \chi=\mathbf{I}_{n \times n}, \quad \mathbf{v}^{t} D \chi=0, \quad \mathbf{v}^{t} \nu=1 BDχ=In×n,vtDχ=0,vtν=1
从后面两个式子中,我们知道 v = ν \mathbf{v}=\boldsymbol\nu v=ν。又注意到,
I ( n + 1 ) × ( n + 1 ) = T T − 1 = D χ B + ν ν t \mathbf{I}_{(n+1) \times(n+1)}=\mathbf{T} \mathbf{T}^{-1}=D \chi \mathbf{B}+\nu \boldsymbol{\nu}^{t} I(n+1)×(n+1)=TT1=DχB+ννt
我们可以定义投影矩阵 Π ∈ R ( n + 1 ) × ( n + 1 ) \Pi \in \mathbb{R}^{(n+1) \times(n+1)} ΠR(n+1)×(n+1)
 (3)  Π : = I − ν ⊗ ν = D χ B \text { (3) } \quad \Pi :=\mathbf{I}-\boldsymbol{\nu} \otimes \boldsymbol{\nu}=D \chi \mathbf{B}  (3) Π:=Iνν=DχB
容易得到 B \mathbf{B} B的显式表达,通过以下的方式,
D χ = ( I − ν ⊗ ν ) t D χ = B t D χ t D χ = B t g ⇒ B = g − 1 D χ t D \chi=(\mathbf{I}-\nu \otimes \nu)^{t} D \chi=\mathbf{B}^{t} D \chi^{t} D \chi=\mathbf{B}^{t} \mathbf{g} \Rightarrow \mathbf{B}=\mathbf{g}^{-1} D \chi^{t} Dχ=(Iνν)tDχ=BtDχtDχ=BtgB=g1Dχt
那么投影矩阵就可以写为,
 (4)  Π = D χ g − 1 D χ t \text { (4) } \quad \quad \Pi=D \chi \mathrm{g}^{-1} D \chi^{t}  (4) Π=Dχg1Dχt
定义面积元
 (5)  q ( y ) : = det ⁡ ( [ ν ( y ) , D χ ( y ) ] ) ∀ y ∈ V \text { (5) } \quad \quad q(\mathbf{y}) :=\operatorname{det}([\nu(\mathbf{y}), D \chi(\mathbf{y})]) \quad \forall \mathbf{y} \in \mathcal{V}  (5) q(y):=det([ν(y),Dχ(y)])yV
容易知道,
 (6)  q = 1 ∣ N ∣ det ⁡ ( [ N , D χ ] ) = 1 ∣ N ∣ det ⁡ ( [ N , D χ ] t [ N , D χ ] ) 1 2 = det ⁡ g \text { (6) } \quad q=\frac{1}{|N|} \operatorname{det}([\mathrm{N}, D \chi])=\frac{1}{|N|} \operatorname{det}\left([\mathrm{N}, D \chi]^{t}[\mathrm{N}, D \chi]\right)^{\frac{1}{2}}=\sqrt{\operatorname{det} \mathrm{g}}  (6) q=N1det([N,Dχ])=N1det([N,Dχ]t[N,Dχ])21=detg
进一步,因为
∣ N ∣ 2 = ∑ j = 1 n + 1 A j det ⁡ ( [ e j , D X ] ) = det ⁡ ( [ N , D X ] ) |N|^{2}=\sum_{j=1}^{n+1} A_{j} \operatorname{det}\left(\left[\mathbf{e}_{j}, D_{\mathcal{X}}\right]\right)=\operatorname{det}\left(\left[\mathbf{N}, D_{\mathcal{X}}\right]\right) N2=j=1n+1Ajdet([ej,DX])=det([N,DX])
联合式(6)我们可以得到,
( 7 ) q = ∣ N ∣ (7) \quad q=|\mathbf{N}| (7)q=N
考虑一个可积函数
v ~ : γ → R \widetilde{v} : \gamma \rightarrow \mathbb{R} v :γR
及其复合
v : V → R v : \mathcal{V} \rightarrow \mathbb{R} v:VR
v = v ~ ∘ χ v=\widetilde{v} \circ \chi v=v χ
我们有积分关系如下,
 (8)  ∫ γ v ~ = ∫ V v q ∀ v ∈ L 1 ( V ) \text { (8) } \quad \int_{\gamma} \tilde{v}=\int_{\mathcal{V}} v q \quad \forall v \in L_{1}(\mathcal{V})  (8) γv~=VvqvL1(V)
这个定义不依赖与曲面的参数化(parametrization),事实上,
χ 1 = χ 2 ∘ ( χ 2 − 1 ∘ χ 1 ) \chi_{1}=\chi_{2} \circ\left(\chi_{2}^{-1} \circ \chi_{1}\right) χ1=χ2(χ21χ1)
D χ 1 = D χ 2 D ( χ 2 − 1 ∘ χ 1 ) D \chi_{1}=D \chi_{2} D\left(\chi_{2}^{-1} \circ \chi_{1}\right) Dχ1=Dχ2D(χ21χ1)
q 1 = ∣ det ⁡ ( D ( χ 2 − 1 ∘ χ 1 ) ) ∣ q 2 ⇒ ∫ V 1 v q 1 = ∫ V 2 v q 2 q_{1}=\left|\operatorname{det}\left(D\left(\chi_{2}^{-1} \circ \chi_{1}\right)\right)\right| q_{2} \quad \Rightarrow \quad \int_{\mathcal{V}_{1}} v q_{1}=\int_{\mathcal{V}_{2}} v q_{2} q1=det(D(χ21χ1))q2V1vq1=V2vq2
这里的复合函数求导是不是有些问题?

微分算子

我们定义曲面上的切向(或表面)梯度(tangential gradient),它满足链式法则
 (9)  ∇ v ( y ) = D χ ( y ) t ∇ γ v ~ ( x ) ∀ y ∈ V \text { (9) } \quad \nabla v(\mathbf{y})=D \chi(\mathbf{y})^{t} \nabla_{\gamma} \widetilde{v}(\mathbf{x}) \quad \forall \mathbf{y} \in \mathcal{V}  (9) v(y)=Dχ(y)tγv (x)yV
那么,我们有
( 10 ) ∇ γ v ~ ( x ) = D χ ( y ) g ( y ) − 1 ∇ v ( y ) ∀ y ∈ V (10) \quad \nabla_{\gamma} \widetilde{v}(\mathrm{x})=D \chi(\mathbf{y}) \mathbf{g}(\mathbf{y})^{-1} \nabla v(\mathbf{y}) \quad \forall \mathbf{y} \in \mathcal{V} (10)γv (x)=Dχ(y)g(y)1v(y)yV
如果 γ \gamma γ C 2 C^2 C2的,那么单位法向量 ν \boldsymbol{\nu} ν C 1 C^1 C1的,这时,我们可以定义Weingarten映射(shape map),如下,
 (11)  W ( x ) = D γ ν ( x ) ∀ x ∈ γ \begin{array}{ll}{\text { (11) }} & {\mathbf{W}(\mathbf{x})=D_{\gamma} \boldsymbol{\nu}(\mathbf{x}) \quad \forall \mathbf{x} \in \gamma}\end{array}  (11) W(x)=Dγν(x)xγ
如果 v ~ = ( v ~ i ) i = 1 n + 1 : γ → R n + 1 \widetilde{\mathbf{v}}=\left(\widetilde{v}_{i}\right)_{i=1}^{n+1} : \gamma \rightarrow \mathbb{R}^{n+1} v =(v i)i=1n+1:γRn+1
那么由(10)我们可以定义其散度,
( 12 ) div ⁡ γ v ~ ( x ) = trace ⁡ ( D γ v ~ ( x ) ) = ∑ i , j = 1 n g i j ( y ) ∂ i χ ( y ) ⋅ ∂ j v ( y ) ∀ y ∈ V (12) \quad \operatorname{div}_{\gamma} \widetilde{\mathbf{v}}(\mathbf{x})=\operatorname{trace}\left(D_{\gamma} \widetilde{\mathbf{v}}(\mathbf{x})\right)=\sum_{i, j=1}^{n} g^{i j}(\mathbf{y}) \partial_{i} \chi(\mathbf{y}) \cdot \partial_{j} \mathbf{v}(\mathbf{y}) \quad \forall \mathbf{y} \in \mathcal{V} (12)divγv (x)=trace(Dγv (x))=i,j=1ngij(y)iχ(y)jv(y)yV
这里, g − 1 = ( g i j ) i , j = 1 n \mathbf{g}^{-1}=\left(g^{i j}\right)_{i, j=1}^{n} g1=(gij)i,j=1n。那么,这个时候Laplace-Beltrami算子就可以定义为
( 13 ) Δ γ v ~ = 1 q ( y ) div ⁡ ( q ( y ) g ( y ) − 1 ∇ v ( y ) ) ∀ y ∈ V (13) \quad \Delta_{\gamma} \widetilde{v}=\frac{1}{q(\mathbf{y})} \operatorname{div}\left(q(\mathbf{y}) \mathbf{g}(\mathbf{y})^{-1} \nabla v(\mathbf{y})\right) \quad \forall \mathbf{y} \in \mathcal{V} (13)Δγv =q(y)1div(q(y)g(y)1v(y))yV
通过这样一个定义,我们可以得到Laplace-Beltrami算子的弱形式,即,弱 ϕ ~ \tilde \phi ϕ~ C 1 C^1 C1的,在 γ \gamma γ上有紧支集,那么
( 14 ) ∫ γ φ ~ Δ γ v ~ = − ∫ γ ∇ γ φ ~ ⋅ ∇ γ v ~ (14) \quad \int_{\gamma} \widetilde{\varphi} \Delta_{\gamma} \widetilde{v}=-\int_{\gamma} \nabla_{\gamma} \widetilde{\varphi} \cdot \nabla_{\gamma} \widetilde{v} (14)γφ Δγv =γγφ γv
证明如下,
∫ γ φ ~ Δ γ v ~ = ∫ V φ div ⁡ ( q g − 1 ∇ v ) = − ∫ V ∇ φ ⋅ g − 1 ∇ v q = − ∫ V D χ g − 1 ∇ φ ⋅ D χ g − 1 ∇ v q = − ∫ γ ∇ γ φ ~ ⋅ ∇ γ v ~ \begin{aligned} \int_{\gamma} \tilde{\varphi} \Delta_{\gamma} \tilde{v} &=\int_{V} \varphi \operatorname{div}\left(q \mathrm{g}^{-1} \nabla v\right) \\ &=-\int_{V} \nabla \varphi \cdot \mathrm{g}^{-1} \nabla v q \\ &=-\int_{V} D \chi \mathrm{g}^{-1} \nabla \varphi \cdot D \chi \mathrm{g}^{-1} \nabla v q \\ &=-\int_{\gamma} \nabla_{\gamma} \tilde{\varphi} \cdot \nabla_{\gamma} \tilde{v} \end{aligned} γφ~Δγv~=Vφdiv(qg1v)=Vφg1vq=VDχg1φDχg1vq=γγφ~γv~

定义零平均值的平方可积空间,
L 2 , # ( γ ) : = { v ~ ∈ L 2 ( γ ) ∣ ∫ γ v ~ = 0 } L_{2, \#}(\gamma) :=\left\{\widetilde{v} \in L_{2}(\gamma) | \int_{\gamma} \widetilde{v}=0\right\} L2,#(γ):={v L2(γ)γv =0}
并定义零平均值的索伯洛夫空间,
H # 1 ( γ ) : = H 1 ( γ ) ∩ L 2 , # ( γ ) , H 1 ( γ ) : = { v ~ ∈ L 2 ( γ ) ∣ ∇ ( v ~ ∘ χ ) ∈ [ L 2 ( V ) ] n } H_{\#}^{1}(\gamma) :=H^{1}(\gamma) \cap L_{2, \#}(\gamma), \quad H^{1}(\gamma) :=\left\{\tilde{v} \in L_{2}(\gamma) | \nabla(\tilde{v} \circ \chi) \in\left[L_{2}(\mathcal{V})\right]^{n}\right\} H#1(γ):=H1(γ)L2,#(γ),H1(γ):={v~L2(γ)(v~χ)[L2(V)]n}
那么,我们有庞加莱不等式(Poincare-Friedrichs)
 (15)  ∥ v ‾ ∥ L 2 ( γ ) ≤ C ∥ ∇ γ v ~ ∥ L 2 ( γ ) ∀ v ~ ∈ H # 1 ( γ ) \begin{array}{llll}{\text { (15) }} & {\|\overline{v}\|_{L_{2}(\gamma)} \leq C\left\|\nabla_{\gamma} \widetilde{v}\right\|_{L_{2}(\gamma)}} & {\forall \widetilde{v} \in H_{\#}^{1}(\gamma)}\end{array}  (15) vL2(γ)Cγv L2(γ)v H#1(γ)
这里的 γ \gamma γ是紧的,利普希茨的,常数 C C C仅依赖于 γ \gamma γ。我们证明一个更一般的情况,

 (16)  ∥ v ~ ∥ L 2 ( γ ) ≤ C ( ∥ ∇ γ v ~ ∥ L 2 ( γ ) + ∣ ∫ γ v ~ ∣ ) ∀ v ~ ∈ H 1 ( γ ) \begin{array}{lll}{\text { (16) }} & {\|\tilde{v}\|_{L_{2}(\gamma)} \leq C\left(\left\|\nabla_{\gamma} \widetilde{v}\right\|_{L_{2}(\gamma)}+\left|\int_{\gamma} \tilde{v}\right|\right)} & {\forall \widetilde{v} \in H^{1}(\gamma)}\end{array}  (16) v~L2(γ)C(γv L2(γ)+γv~)v H1(γ)

用反证法(proof by contradiction)证明如下:
假设存在 v ~ k ∈ H 1 ( γ ) \widetilde{v}_{k} \in H^{1}(\gamma) v kH1(γ),使得
∥ v ~ k ∥ L 2 ( γ ) = 1 , ∥ ∇ γ v ~ k ∥ L 2 ( γ ) + ∣ ∫ γ v ~ k ∣ → 0 \left\|\widetilde{v}_{k}\right\|_{L_{2}(\gamma)}=1, \quad\left\|\nabla_{\gamma} \widetilde{v}_{k}\right\|_{L_{2}(\gamma)}+\left|\int_{\gamma} \widetilde{v}_{k}\right| \rightarrow 0 v kL2(γ)=1,γv kL2(γ)+γv k0
因为 H 1 ( γ ) ⊂ L 2 ( γ ) H^{1}(\gamma) \subset L_{2}(\gamma) H1(γ)L2(γ)是紧的,且 { v ~ k } k \left\{\widetilde{v}_{k}\right\}_{k} {v k}k H 1 ( γ ) H^{1}(\gamma) H1(γ)有界,那么存在一个子列 { v ~ k } k \left\{\widetilde{v}_{k}\right\}_{k} {v k}k L 2 L^2 L2中收敛,又因为
∣ ∫ γ v ~ k ∣ → 0 \left|\int_{\gamma} \widetilde{v}_{k}\right| \rightarrow 0 γv k0
所以子列收敛于0,这和
∥ v ~ k ∥ L 2 ( γ ) = 1 \left\|\tilde{v}_{k}\right\|_{L_{2}(\gamma)}=1 v~kL2(γ)=1
矛盾。

定义对偶空间的范数,
( 17 ) ∥ f ~ ∥ H # − 1 ( γ ) = sup ⁡ v ~ ∈ H # 1 ( γ ) ∫ γ f ~ v ‾ ∥ ∇ γ v ~ ∥ L 2 ( γ ) (17) \quad\|\widetilde{f}\|_{H_{\#}^{-1}(\gamma)}=\sup _{\tilde{v} \in H_{\#}^{1}(\gamma)} \frac{\int_{\gamma} \widetilde{f} \overline{v}}{\left\|\nabla_{\gamma} \widetilde{v}\right\|_{L_{2}(\gamma)}} (17)f H#1(γ)=v~H#1(γ)supγv L2(γ)γf v
方程的弱形式,可以是,对于 f ~ ∈ L 2 , # ( γ ) \widetilde{f} \in L_{2, \#}(\gamma) f L2,#(γ),寻找 u ~ ∈ H # 1 ( γ ) \widetilde{u} \in H_{\#}^{1}(\gamma) u H#1(γ),使得
( 18 ) ∫ γ ∇ γ u ~ ⋅ ∇ γ v ~ = ∫ γ f ~ v ~ ∀ v ~ ∈ H # 1 ( γ ) (18) \quad \int_{\gamma} \nabla_{\gamma} \widetilde{u} \cdot \nabla_{\gamma} \widetilde{v}=\int_{\gamma} \widetilde{f} \tilde{v} \quad \forall \widetilde{v} \in H_{\#}^{1}(\gamma) (18)γγu γv =γf v~v H#1(γ)
感谢性质 f ~ ∈ L 2 , # ( γ ) \widetilde{f} \in L_{2, \#}(\gamma) f L2,#(γ),解满足
( 19 ) ∫ γ ∇ γ u ~ ⋅ ∇ γ v ~ = ∫ γ f ~ v ~ ∀ v ~ ∈ H 1 ( γ ) (19) \quad \int_{\gamma} \nabla_{\gamma} \widetilde{u} \cdot \nabla_{\gamma} \widetilde{v}=\int_{\gamma} \widetilde{f} \widetilde{v} \quad \forall \widetilde{v} \in H^{1}(\gamma) (19)γγu γv =γf v v H1(γ)
怎么理解?

下面我们介绍曲面的正则性(regularity),首先,我们先把结果展示在下面:
1、(regularity). If γ \gamma γ is of class C 2 C^2 C2, then there is a constant C C C only depending on γ \gamma γ such that
( 20 ) ∥ u ~ ∥ H 2 ( γ ) ≤ C ∥ f ~ ∥ L 2 ( γ ) (20) \quad \quad\|\widetilde{u}\|_{H^{2}(\gamma)} \leq C\|\widetilde{f}\|_{L_{2}(\gamma)} (20)u H2(γ)Cf L2(γ)
2、(regularity for W p 2 W^2_p Wp2 surfaces). If γ \gamma γ is of class W p 2 W^2_p Wp2 with n &lt; p ≤ ∞ n&lt;p\le \infty n<p, then there is a constant C &gt; 0 C&gt;0 C>0 depending on γ , p \gamma,p γ,p and n n n such that
( 21 ) ∥ u ~ ∥ H 2 ( γ ) ≤ C ∥ f ~ ∥ L 2 ( γ ) (21) \quad\|\tilde{u}\|_{H^{2}(\gamma)} \leq C\|\tilde{f}\|_{L_{2}(\gamma)} (21)u~H2(γ)Cf~L2(γ)
为了证明曲面的正则性,我们先介绍两个来自于别的文献的一些结果。用英文表述如下:

a、Interior regularity therory
在这里插入图片描述

b、unique solution
在这里插入图片描述

c、
在这里插入图片描述

我们先证明第一个。

Δ γ u ~ i = ψ ~ i f ~ + 2 ∇ γ u ~ ⋅ ∇ γ ψ ~ i + u ~ Δ γ ψ ~ i = : g ~ i \Delta_{\gamma} \widetilde{u}_{i}=\widetilde{\psi}_{i} \widetilde{f}+2 \nabla_{\gamma} \widetilde{u} \cdot \nabla_{\gamma} \widetilde{\psi}_{i}+\widetilde{u} \Delta_{\gamma} \widetilde{\psi}_{i}=: \widetilde{g}_{i} Δγu i=ψ if +2γu γψ i+u Δγψ i=:g i
∥ ∇ γ u ~ ∥ L 2 ( γ ) ≤ ∥ f ~ ∥ H # − 1 ( γ ) \left\|\nabla_{\gamma} \widetilde{u}\right\|_{L_{2}(\gamma)} \leq\|\widetilde{f}\|_{H_{\#}^{-1}(\gamma)} γu L2(γ)f H#1(γ)
以及,庞加莱不等式,我们能得到
∥ g ~ i ∥ L 2 ( γ ) ≤ C ∥ f ~ ∥ L 2 ( γ ∩ U i ) \left\|\widetilde{g}_{i}\right\|_{L_{2}(\gamma)} \leq C\|\tilde{f}\|_{L^{2}\left(\gamma \cap \mathcal{U}_{i}\right)} g iL2(γ)Cf~L2(γUi)

div ⁡ ( q i ( y ) g i ( y ) − 1 ∇ u ( y ) ) = q i ( y ) g ~ i ( χ ( y ) ) ∀ y ∈ V i \operatorname{div}\left(q_{i}(\mathbf{y}) \mathbf{g}_{i}(\mathbf{y})^{-1} \nabla u(\mathbf{y})\right)=q_{i}(y) \widetilde{g}_{i}(\chi(\mathbf{y})) \quad \forall \mathbf{y} \in \mathcal{V}_{i} div(qi(y)gi(y)1u(y))=qi(y)g i(χ(y))yVi
根据引入的定理,得到,
∥ u i ∥ H 2 ( χ − 1 ( W i ) ) ≤ C ∥ g i ∥ L 2 ( U i ) \left\|u_{i}\right\|_{H^{2}\left(\boldsymbol{\chi}^{-1}\left(\mathcal{W}_{i}\right)\right)} \leq C\left\|g_{i}\right\|_{L_{2}\left(\mathcal{U}_{i}\right)} uiH2(χ1(Wi))CgiL2(Ui)
最后,我们可以得到
∥ u ~ ∥ H 2 ( γ ) ≤ ∑ i = 1 I ∥ u ~ i ∥ H 2 ( W i ) ≤ C ∑ i = 1 I ∥ g ~ i ∥ L 2 ( U i ) ≤ C ∥ f ~ ∥ L 2 ( γ ) \|\widetilde{u}\|_{H^{2}(\gamma)} \leq \sum_{i=1}^{I}\left\|\widetilde{u}_{i}\right\|_{H^{2}\left(\mathcal{W}_{i}\right)} \leq C \sum_{i=1}^{I}\left\|\widetilde{g}_{i}\right\|_{L_{2}\left(\mathcal{U}_{i}\right)} \leq C\|\widetilde{f}\|_{L_{2}(\gamma)} u H2(γ)i=1Iu iH2(Wi)Ci=1Ig iL2(Ui)Cf L2(γ)

接下来我们证明第二个。

g , q ∈ W p 1 ( V ) ⇒ A : = q g − 1 ∈ W p 1 ( V ) \mathbf{g}, q \in W_{p}^{1}(\mathcal{V}) \quad \Rightarrow \quad \mathbf{A} :=q \mathbf{g}^{-1} \in W_{p}^{1}(\mathcal{V}) g,qWp1(V)A:=qg1Wp1(V)

 (22)  A : D 2 u = q g − div ⁡ ( A ) ⋅ ∇ u = ℓ ∈ L r 0 ( V ) \text { (22) } \quad \mathbf{A} : D^{2} u=q g-\operatorname{div}(\mathbf{A}) \cdot \nabla u=\ell \in L_{r_{0}}(\mathcal{V})  (22) A:D2u=qgdiv(A)u=Lr0(V)
则有,
∥ u ∥ W r k 2 ( Z ) ≲ ∥ ℓ ∥ L r k ( Z ) \|u\|_{W_{r_{k}}^{2}}(\mathcal{Z}) \lesssim\|\ell\|_{L_{r_{k}}}(\mathcal{Z}) uWrk2(Z)Lrk(Z)
递推可得最小的 k k k

符号距离函数

定义符号距离函数,内正外负
∣ d ( x ) ∣ = dist ⁡ ( x , γ ) ∀ x ∈ N |d(\mathrm{x})|=\operatorname{dist}(\mathrm{x}, \gamma) \quad \forall \mathrm{x} \in \mathcal{N} d(x)=dist(x,γ)xN

这里, N \mathcal{N} N γ \gamma γ的tubular领域,对于每一个 x ∈ N x \in \mathcal{N} xN,定义最近点投影(closest point
projection)
 (23)  P d ( x ) = x − d ( x ) ∇ d ( x ) ∀ x ∈ N \text { (23) } \quad \mathbf{P}_{d}(\mathrm{x})=\mathrm{x}-d(\mathrm{x}) \nabla d(\mathrm{x}) \quad \forall \mathrm{x} \in \mathcal{N}  (23) Pd(x)=xd(x)d(x)xN
一个关于梯度的性质是
( 24 ) ∇ d ( x ) = ∇ d ( P d ( x ) ) = ∇ d ( x − d ( x ) ∇ d ( x ) ) ∀ x ∈ N (24) \quad \nabla d(\mathrm{x})=\nabla d\left(\mathrm{P}_{d}(\mathrm{x})\right)=\nabla d(\mathrm{x}-d(\mathrm{x}) \nabla d(\mathrm{x})) \quad \forall \mathrm{x} \in \mathcal{N} (24)d(x)=d(Pd(x))=d(xd(x)d(x))xN
二阶Hessian矩阵满足
 (25)  D 2 d ( x ) ∇ d ( x ) = 0 ∀ x ∈ N \begin{array}{ll}{\text { (25) }} &amp; {D^{2} d(\mathrm{x}) \nabla d(\mathrm{x})=0 \quad \forall \mathrm{x} \in \mathcal{N}}\end{array}  (25) D2d(x)d(x)=0xN
定义 v ~ \tilde v v~的一个自然扩充
( 26 ) v ( x ) = v ~ ( P d ( x ) ) = v ~ ( x − d ( x ) ∇ d ( x ) ) ∀ x ∈ N (26) \quad v(\mathrm{x})=\tilde{v}\left(\mathrm{P}_{d}(\mathrm{x})\right)=\tilde{v}(\mathrm{x}-d(\mathrm{x}) \nabla d(\mathrm{x})) \quad \forall \mathrm{x} \in \mathcal{N} (26)v(x)=v~(Pd(x))=v~(xd(x)d(x))xN
对上式求导并利用投影算子的定义,我们可以得到(27)
∇ v ( x ) = ( I − ∇ d ( x ) ⊗ ∇ d ( x ) − d ( x ) D 2 d ( x ) ) ∇ γ v ~ ( P d ( x ) ) = ( Π ( x ) − d ( x ) D 2 d ( x ) ) ∇ γ v ~ ( P d ( x ) ) = ( I − d ( x ) D 2 d ( x ) ) Π ( x ) ∇ γ v ~ ( P d ( x ) ) \begin{aligned} \nabla v(\mathbf{x}) &amp;=\left(\mathbf{I}-\nabla d(\mathbf{x}) \otimes \nabla d(\mathbf{x})-d(\mathbf{x}) D^{2} d(\mathbf{x})\right) \nabla_{\gamma} \widetilde{v}\left(\mathbf{P}_{d}(\mathbf{x})\right) \\ &amp;=\left(\Pi(\mathbf{x})-d(\mathbf{x}) D^{2} d(\mathbf{x})\right) \nabla_{\gamma} \widetilde{v}\left(\mathbf{P}_{d}(\mathbf{x})\right) \\ &amp;=\left(\mathbf{I}-d(\mathbf{x}) D^{2} d(\mathbf{x})\right) \Pi(\mathbf{x}) \nabla_{\gamma} \widetilde{v}\left(\mathbf{P}_{d}(\mathbf{x})\right) \end{aligned} v(x)=(Id(x)d(x)d(x)D2d(x))γv (Pd(x))=(Π(x)d(x)D2d(x))γv (Pd(x))=(Id(x)D2d(x))Π(x)γv (Pd(x))

下面我们定义一个新的tangential梯度,如下
( 28 ) ∇ γ v ~ ( x ) = ( I − ν ( x ) ⊗ ν ( x ) ) ∇ v ( x ) = Π ( x ) ∇ v ( x ) ∀ x ∈ γ (28) \quad \nabla_{\gamma} \widetilde{v}(\mathbf{x})=(\mathbf{I}-\boldsymbol{\nu}(\mathbf{x}) \otimes \boldsymbol{\nu}(\mathbf{x})) \nabla v(\mathbf{x})=\Pi(\mathbf{x}) \nabla v(\mathbf{x}) \quad \forall \mathbf{x} \in \gamma (28)γv (x)=(Iν(x)ν(x))v(x)=Π(x)v(x)xγ
容易想到,这个定义和前面的定义(10)是相容的,事实上,
∇ γ v ~ ( x ) ⋅ ∂ i χ ( y ) = ∇ v ( x ) ⋅ ∂ i χ ( y ) = ∂ i v ~ ( χ ( y ) ) \nabla_{\gamma} \widetilde{v}(\mathbf{x}) \cdot \partial_{i} \chi(\mathbf{y})=\nabla v(\mathbf{x}) \cdot \partial_{i} \chi(\mathbf{y})=\partial_{i} \widetilde{v}(\chi(\mathbf{y})) γv (x)iχ(y)=v(x)iχ(y)=iv (χ(y))
这个需要细细思考和品味。

两个remark:1、切向梯度和 v ~ \tilde v v~的扩充是无关的(irrelevant)。2、切向梯度和曲面的参数化是无关的(parametrization)。

相同地,我们也可以用新方式的定义曲面上的散度和拉普拉斯算子,他们和原来的定义也是相容的,
div ⁡ γ ( v ~ ( x ) ) = trace ⁡ ( ∇ γ v ~ ( x ) ) = div ⁡ ( v ( x ) ) − ν ( x ) t ∇ v ( x ) ν ( x ) ∀ x ∈ γ \operatorname{div}_{\gamma}(\widetilde{\mathbf{v}}(\mathbf{x}))=\operatorname{trace}\left(\nabla_{\gamma} \widetilde{\mathbf{v}}(\mathbf{x})\right)=\operatorname{div}(\mathbf{v}(\mathbf{x}))-\boldsymbol{\nu}(\mathbf{x})^{t} \nabla \mathbf{v}(\mathbf{x}) \boldsymbol{\nu}(\mathbf{x}) \quad \forall \mathbf{x} \in \gamma divγ(v (x))=trace(γv (x))=div(v(x))ν(x)tv(x)ν(x)xγ
Δ γ v ~ = trace ⁡ ( ( I − ν ⊗ ν ) D 2 v ) − ( ∇ v ⋅ ν ) div ⁡ γ ( ν ) \Delta_{\gamma} \widetilde{v}=\operatorname{trace}\left((\mathbf{I}-\boldsymbol{\nu} \otimes \boldsymbol{\nu}) D^{2} v\right)-(\nabla v \cdot \boldsymbol{\nu}) \operatorname{div}_{\gamma}(\boldsymbol{\nu}) Δγv =trace((Iνν)D2v)(vν)divγ(ν)
Δ γ v ~ ( x ) = Δ v ( x ) − ν ( x ) t D 2 v ( x ) ν ( x ) − ( ∇ v ⋅ ν ) ( x ) div ⁡ γ ( ν ( x ) ) ∀ x ∈ γ \Delta_{\gamma} \widetilde{v}(\mathbf{x})=\Delta v(\mathbf{x})-\boldsymbol{\nu}(\mathbf{x})^{t} D^{2} v(\mathbf{x}) \boldsymbol{\nu}(\mathbf{x})-(\nabla v \cdot \boldsymbol{\nu})(\mathbf{x}) \operatorname{div}_{\gamma}(\boldsymbol{\nu}(\mathbf{x})) \quad \forall \mathbf{x} \in \gamma Δγv (x)=Δv(x)ν(x)tD2v(x)ν(x)(vν)(x)divγ(ν(x))xγ
第二个拉普拉斯是因为
∇ γ ( ∇ ν ⋅ ν ) ⋅ ν = 0 \nabla_{\gamma}(\nabla \boldsymbol{\nu} \cdot \boldsymbol{\nu}) \cdot \boldsymbol{\nu}=0 γ(νν)ν=0

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 点我我会动 设计师:上身试试 返回首页